IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v206y2018icp95-101.html
   My bibliography  Save this article

Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield

Author

Listed:
  • Wang, Jun
  • Ghimire, Rajan
  • Fu, Xin
  • Sainju, Upendra M.
  • Liu, Wenzhao

Abstract

Straw mulching is widely used to conserve soil water and increase crop yields. The effects of wheat straw mulching rate and method on dryland soil water storage, winter wheat (Triticum aestivum L.) growth and yield, and water-use efficiency (WUE) were examined from 2008 to 2015 in the Loess Plateau of China. Treatments included wheat straw mulching at a high rate of 9000 kg ha−1 (HSM) and low rate of 4500 kg ha−1 (LSM) throughout the year, straw mulching at a rate of 9000 kg ha−1 during summer fallow (FSM), and no mulching (CK). Soil water storage at wheat planting and precipitation-storage efficiency (PSE) were greater with straw mulching than without. Soil water storage at harvest was greater with HSM than CK and FSM. Wheat yield components such as number of wheat seedling, plant, tiller, and spike and thousand-grain weight varied with treatments and years, but wheat aboveground biomass and grain yields were usually greater with mulching than without during years with below-average precipitation. Harvest index and WUE were lower with LSM and HSM than other treatments in most years, but evapotranspiration did not vary with treatments. Overall, the increased PSE due to straw mulching did not increase yield and WUE, and straw mulching could sustain dryland wheat grain yield only in dry years.

Suggested Citation

  • Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
  • Handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:95-101
    DOI: 10.1016/j.agwat.2018.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418305523
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakraborty, Debashis & Garg, R.N. & Tomar, R.K. & Singh, Ravender & Sharma, S.K. & Singh, R.K. & Trivedi, S.M. & Mittal, R.B. & Sharma, P.K. & Kamble, K.H., 2010. "Synthetic and organic mulching and nitrogen effect on winter wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 97(5), pages 738-748, May.
    2. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J. & Tian, X.H., 2013. "Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China," Agricultural Water Management, Elsevier, vol. 116(C), pages 39-49.
    3. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    4. Liu, Wenzhao & Zhang, X.-C. & Dang, Tinghui & Ouyang, Zhu & Li, Zhi & Wang, Jun & Wang, Rui & Gao, Changqing, 2010. "Soil water dynamics and deep soil recharge in a record wet year in the southern Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 97(8), pages 1133-1138, August.
    5. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    6. Huang, Yilong & Chen, Liding & Fu, Bojie & Huang, Zhilin & Gong, Jie, 2005. "The wheat yields and water-use efficiency in the Loess Plateau: straw mulch and irrigation effects," Agricultural Water Management, Elsevier, vol. 72(3), pages 209-222, April.
    7. Su, Ziyou & Zhang, Jinsong & Wu, Wenliang & Cai, Dianxiong & Lv, Junjie & Jiang, Guanghui & Huang, Jian & Gao, Jun & Hartmann, Roger & Gabriels, Donald, 2007. "Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 87(3), pages 307-314, February.
    8. Balwinder-Singh & Eberbach, P.L. & Humphreys, E. & Kukal, S.S., 2011. "The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India," Agricultural Water Management, Elsevier, vol. 98(12), pages 1847-1855, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, Hong-Lian & Chen, Zhi-Gang & Jia, Ting-Ting & Su, Qian-Wei & Su, Shu-Chai, 2021. "Response of different organic mulch treatments on yield and quality of Camellia oleifera," Agricultural Water Management, Elsevier, vol. 245(C).
    2. Lv, Shenqiang & Li, Jia & Yang, Zeyu & Yang, Ting & Li, Huitong & Wang, Xiaofei & Peng, Yi & Zhou, Chunju & Wang, Linquan & Abdo, Ahmed I., 2023. "The field mulching could improve sustainability of spring maize production on the Loess Plateau," Agricultural Water Management, Elsevier, vol. 279(C).
    3. Li, Haoyu & Zhang, Yuanhong & Zhang, Qi & Ahmad, Naeem & Liu, Pengzhao & Wang, Rui & Li, Jun & Wang, Xiaoli, 2021. "Converting continuous cropping to rotation including subsoiling improves crop yield and prevents soil water deficit: A 12-yr in-situ study in the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    3. Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    4. Peng, Zhengkai & Wang, Linlin & Xie, Junhong & Li, Lingling & Coulter, Jeffrey A. & Zhang, Renzhi & Luo, Zhuzhu & Cai, Liqun & Carberry, Peter & Whitbread, Anthony, 2020. "Conservation tillage increases yield and precipitation use efficiency of wheat on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 231(C).
    5. Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
    6. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J., 2015. "Effect of nitrogen fertilization under plastic mulched and non-plastic mulched conditions on water use by maize plants in dryland areas of China," Agricultural Water Management, Elsevier, vol. 162(C), pages 15-32.
    7. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    8. Yan, Zhenxing & Gao, Chao & Ren, Yujie & Zong, Rui & Ma, Yuzhao & Li, Quanqi, 2017. "Effects of pre-sowing irrigation and straw mulching on the grain yield and water use efficiency of summer maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 186(C), pages 21-28.
    9. Abdul Ghaffar Khan & Muhammad Imran & Anwar-ul-Hassan Khan & Ali Fares & Jiří Šimůnek & Tanveer Ul-Haq & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali, 2021. "Performance of Spring and Summer-Sown Maize under Different Irrigation Strategies in Pakistan," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    10. Li, Rui & Chai, Shouxi & Chai, Yuwei & Li, Yawei & Lan, Xuemei & Ma, Jiantao & Cheng, Hongbo & Chang, Lei, 2021. "Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 254(C).
    11. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    12. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    13. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    14. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Li, S.X. & Wang, Z.H. & Li, S.Q. & Gao, Y.J. & Tian, X.H., 2013. "Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China," Agricultural Water Management, Elsevier, vol. 116(C), pages 39-49.
    16. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    17. Kader, M.A. & Nakamura, K. & Senge, M. & Mojid, M.A. & Kawashima, S., 2019. "Soil hydro-thermal regimes and water use efficiency of rain-fed soybean (Glycine max) as affected by organic mulches," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    18. Hou, Xianqing & Li, Rong, 2019. "Interactive effects of autumn tillage with mulching on soil temperature, productivity and water use efficiency of rainfed potato in loess plateau of China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    19. Abd El-Mageed, Taia A. & El- Samnoudi, Ibrahim M. & Ibrahim, Abd El-Aty M. & Abd El Tawwab, Ahmed R., 2018. "Compost and mulching modulates morphological, physiological responses and water use efficiency in sorghum (bicolor L. Moench) under low moisture regime," Agricultural Water Management, Elsevier, vol. 208(C), pages 431-439.
    20. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:206:y:2018:i:c:p:95-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.