IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v245y2021ics0378377420321983.html
   My bibliography  Save this article

Response of different organic mulch treatments on yield and quality of Camellia oleifera

Author

Listed:
  • Ye, Hong-Lian
  • Chen, Zhi-Gang
  • Jia, Ting-Ting
  • Su, Qian-Wei
  • Su, Shu-Chai

Abstract

Uneven seasonal rainfall results in insufficient water supply and low yelds of Camellia oleifera growing in mountainous and hilly areas without irrigation conditions. To assess the effectiveness of mulching on the yield and quality of three cultivars of C. oleifera (‘Hengdongdatao’, ‘Huashuo’ and ‘Xianglin 210’) and its influence of preserving soil moisture, a field experiment was conducted in 2016 in Changning, Hunan. Mulching materials of ecological pad (T1), straw (T2), straw and ecological pad (T3), gravel (T4), sawdust (T5) and camellia shell (T6) were tested and compared with un-mulched (CK). The mulch material with the strongest cooling effect in high-temperature weather was T2. The possible reason is that the surface roughness of the mulching material is good for reflecting light. T3 was the most effective at maintaining soil moisture. The reason is that straw and ecological pad increased the thickness of the cover layer and their small pore size, thus the evaporation rate decreased. It can appropriately stable the temperature in high-temperature weather and can better maintain the soil moisture to provide adequate water for growth. T1showed soil moisture by 14.93%, 14.98%, 14.89% for three cultivars, respectively. All treatments increased yield compared to CK. T1 showed the highest yield and was higher than CK by 58%, 61% and 124% for Hengdongdatao, Huashuo, and Xianglin 210, respectively. Mulching with T1 (40.23% and 39.63%) resulted in the highest oil content ratio in ‘Hengdongdatao’ and ‘Huashuo’ and mulching with T4 (36.93%) resulted in highest oil content ratio in ‘Xianglin 210’. Treatment of the ‘Xianglin 210’cultivar with T1 was re-tested in 2017. In all months analyzed, related indicators measured were significantly different compared with CK. This research suggests that mulching organic material to C. oleifera hilly area is an effective measure to solve seasonal drought and increase yield when there are no irrigation conditions present.

Suggested Citation

  • Ye, Hong-Lian & Chen, Zhi-Gang & Jia, Ting-Ting & Su, Qian-Wei & Su, Shu-Chai, 2021. "Response of different organic mulch treatments on yield and quality of Camellia oleifera," Agricultural Water Management, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420321983
    DOI: 10.1016/j.agwat.2020.106654
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420321983
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106654?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kar, Gouranga & Kumar, Ashwani & Martha, M., 2007. "Water use efficiency and crop coefficients of dry season oilseed crops," Agricultural Water Management, Elsevier, vol. 87(1), pages 73-82, January.
    2. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    3. Chakraborty, Debashis & Garg, R.N. & Tomar, R.K. & Singh, Ravender & Sharma, S.K. & Singh, R.K. & Trivedi, S.M. & Mittal, R.B. & Sharma, P.K. & Kamble, K.H., 2010. "Synthetic and organic mulching and nitrogen effect on winter wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 97(5), pages 738-748, May.
    4. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    5. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    6. Saglam, Mustafa & Sintim, Henry Y. & Bary, Andy I. & Miles, Carol A. & Ghimire, Shuresh & Inglis, Debra A. & Flury, Markus, 2017. "Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics," Agricultural Water Management, Elsevier, vol. 193(C), pages 240-250.
    7. Kader, M.A. & Nakamura, K. & Senge, M. & Mojid, M.A. & Kawashima, S., 2019. "Soil hydro-thermal regimes and water use efficiency of rain-fed soybean (Glycine max) as affected by organic mulches," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    2. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    3. Yin, Tao & Yao, Zhipeng & Yan, Changrong & Liu, Qi & Ding, Xiaodong & He, Wenqing, 2023. "Maize yield reduction is more strongly related to soil moisture fluctuation than soil temperature change under biodegradable film vs plastic film mulching in a semi-arid region of northern China," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
    5. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    6. Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    7. Arun Kumar & Kulvir Singh Saini & Lalit Kumar Rolaniya & Love Kumar Singh & Prashant Kaushik, 2022. "Root System Architecture and Symbiotic Parameters of Summer Mung Bean ( Vigna Radiata ) under Different Conservation Agriculture Practices," Sustainability, MDPI, vol. 14(7), pages 1-13, March.
    8. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    9. Zheng, Jing & Fan, Junliang & Zhou, Minghua & Zhang, Fucang & Liao, Zhenqi & Lai, Zhenlin & Yan, Shicheng & Guo, Jinjin & Li, Zhijun & Xiang, Youzhen, 2022. "Ridge-furrow plastic film mulching enhances grain yield and yield stability of rainfed maize by improving resources capture and use efficiency in a semi-humid drought-prone region," Agricultural Water Management, Elsevier, vol. 269(C).
    10. Singh, Sukhbir & Angadi, Sangamesh V. & Grover, Kulbhushan K. & Hilaire, Rolston St. & Begna, Sultan, 2016. "Effect of growth stage based irrigation on soil water extraction and water use efficiency of spring safflower cultivars," Agricultural Water Management, Elsevier, vol. 177(C), pages 432-439.
    11. Yousef Joshan & Behzad Sani & Hamid Jabbari & Hamid Mozafari & Payam Moaveni, 2019. "Effect of drought stress on oil content and fatty acids composition of some safflower genotypes," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 65(11), pages 563-567.
    12. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    13. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    14. Yang, Yanmin & Yang, Yonghui & Han, Shumin & Li, Huilong & Wang, Lu & Ma, Qingtao & Ma, Lexin & Wang, Linna & Hou, Zhenjun & Chen, Li & Liu, De Li, 2023. "Comparison of water-saving potential of fallow and crop change with high water-use winter-wheat – summer-maize rotation," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Xiaoyi Jiang & Dandong Mao & Min Zhu & Xingchun Wang & Chunyan Li & Xinkai Zhu & Wenshan Guo & Jinfeng Ding, 2022. "Evaluating the Waterlogging Tolerance of Wheat Cultivars during the Early Growth Stage Using the Comprehensive Evaluation Value and Digital Image Analysis," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    16. Santos, Reginaldo Ferreira & Bassegio, Doglas & de Almeida Silva, Marcelo, 2017. "Productivity and production components of safflower genotypes affected by irrigation at phenological stages," Agricultural Water Management, Elsevier, vol. 186(C), pages 66-74.
    17. Rajeev Kumar Gupta & Jagroop Kaur & Jasjit Singh Kang & Harmeet Singh & Sukhveer Kaur & Samy Sayed & Ahmed Gaber & Akbar Hossain, 2022. "Tillage in Combination with Rice Straw Retention in a Rice–Wheat System Improves the Productivity and Quality of Wheat Grain through Improving the Soil Physio-Chemical Properties," Land, MDPI, vol. 11(10), pages 1-18, September.
    18. Istanbulluoglu, Ahmet, 2009. "Effects of irrigation regimes on yield and water productivity of safflower (Carthamus tinctorius L.) under Mediterranean climatic conditions," Agricultural Water Management, Elsevier, vol. 96(12), pages 1792-1798, December.
    19. Fan, Yaqiong & Ding, Risheng & Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Li, Sien, 2017. "Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland," Agricultural Water Management, Elsevier, vol. 179(C), pages 122-131.
    20. Katuwal, Krishna B. & Cho, Youngkoo & Singh, Sukhbir & Angadi, Sangamesh V. & Begna, Sultan & Stamm, Michael, 2020. "Soil water extraction pattern and water use efficiency of spring canola under growth-stage-based irrigation management," Agricultural Water Management, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:245:y:2021:i:c:s0378377420321983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.