IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i13p10442-d1185486.html
   My bibliography  Save this article

Sustainable Potato Growth under Straw Mulching Practices

Author

Listed:
  • Abdul Waheed

    (National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    These authors contributed equally to this work.)

  • Chuang Li

    (Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling 136105, China
    These authors contributed equally to this work.)

  • Murad Muhammad

    (National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Mushtaq Ahmad

    (Department of Zoology, Islamia College University, Peshawar 25120, Pakistan)

  • Khalid Ali Khan

    (Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
    Applied College, King Khalid University, Abha 61413, Saudi Arabia)

  • Hamed A. Ghramh

    (Unit of Bee Research and Honey Production, King Khalid University, Abha 61413, Saudi Arabia
    Biology Department Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia)

  • Zhongwei Wang

    (Institute of Economic Plants, Jilin Academy of Agricultural Sciences, Gongzhuling 136105, China)

  • Daoyuan Zhang

    (National Key Laboratory of Ecological Security and Resource Utilization in Arid Areas, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China)

Abstract

Extreme heat, droughts, pests, diseases, and short bursts of heavy rain make potato production unsustainable. This unfavorable environment negatively affects potato productivity and yield levels. Within the next few years, conditions will likely deteriorate even more. In potato cultivation, straw mulching has been shown to increase yields by promoting the growth of beneficial bacteria in the soil. Mulching improves soil humidity, decreases transpiration, and cools the soil in dry and hot regions. There is a global decline in potato yields per hectare due to poor nutrient management, moderately humid years, and high disease pressure caused by Phytophthora infestans and Alternaria species . Farmers must take cultivation measures to achieve economic efficiency and adequate yields. A range of practices contributes to better potato yields and productivity, such as the use of appropriate fungicides, planting high-yielding varieties, and increasing row spacing. These practices complicate cultivation and affect profits. Furthermore, inorganic nitrogen in the soil regularly causes acidification, eroding soil fertility. As a result of land preparation, straw residues from rice and maize are collected from the field and destroyed or burned, which depletes nutrients and pollutes the air. Returning these residues to the soil, however, can improve its quality. Integrating rice and maize straw mulching into potato cultivation practices can enhance agricultural sustainability, productivity, and yield. This review will focus on using rice and maize straw mulching in cultivating potatoes. Straw mulching promotes sustainable potato growth, increasing productivity and quality while minimizing reliance on chemical inputs. Such practices can mitigate the need for synthetic fertilizers to enhance sustainable agriculture, ensure long-term growth, improve soil health, increase yields, and promote sustainable agriculture.

Suggested Citation

  • Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10442-:d:1185486
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/13/10442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/13/10442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Changqing Si & Fei Qi & Xiaoming Ding & Fen He & Zhenjun Gao & Qian Feng & Liang Zheng, 2023. "CFD Analysis of Solar Greenhouse Thermal and Humidity Environment Considering Soil–Crop–Back Wall Interactions," Energies, MDPI, vol. 16(5), pages 1-20, February.
    2. Bernard, John C. & Bernard, Daria J., 2010. "Comparing Parts with the Whole: Willingness to Pay for Pesticide-Free, Non-GM, and Organic Potatoes and Sweet Corn," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(3), pages 1-19, December.
    3. Brian Sims & Sandra Corsi & Gualbert Gbehounou & Josef Kienzle & Makiko Taguchi & Theodor Friedrich, 2018. "Sustainable Weed Management for Conservation Agriculture: Options for Smallholder Farmers," Agriculture, MDPI, vol. 8(8), pages 1-20, August.
    4. Sukamal Sarkar & Milan Skalicky & Akbar Hossain & Marian Brestic & Saikat Saha & Sourav Garai & Krishnendu Ray & Koushik Brahmachari, 2020. "Management of Crop Residues for Improving Input Use Efficiency and Agricultural Sustainability," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    5. Hannah Heyman & Nina Bassuk & Jean Bonhotal & Todd Walter, 2019. "Compost Quality Recommendations for Remediating Urban Soils," IJERPH, MDPI, vol. 16(17), pages 1-23, September.
    6. Mzoughi, Naoufel, 2011. "Farmers adoption of integrated crop protection and organic farming: Do moral and social concerns matter?," Ecological Economics, Elsevier, vol. 70(8), pages 1536-1545, June.
    7. Wagg, Cameron & Hann, Sheldon & Kupriyanovich, Yulia & Li, Sheng, 2021. "Timing of short period water stress determines potato plant growth, yield and tuber quality," Agricultural Water Management, Elsevier, vol. 247(C).
    8. Singh, Samar Pal & Mahapatra, B.S. & Pramanick, Biswajit & Yadav, Vimal Raj, 2021. "Effect of irrigation levels, planting methods and mulching on nutrient uptake, yield, quality, water and fertilizer productivity of field mustard (Brassica rapa L.) under sandy loam soil," Agricultural Water Management, Elsevier, vol. 244(C).
    9. Dominic Kwadwo Anning & Huizhen Qiu & Chunhong Zhang & Philip Ghanney & Yujiao Zhang & Yajun Guo, 2021. "Maize Straw Return and Nitrogen Rate Effects on Potato ( Solanum tuberosum L.) Performance and Soil Physicochemical Characteristics in Northwest China," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    10. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    11. Akhtar, Kashif & Wang, Weiyu & Khan, Ahmad & Ren, Guangxin & Afridi, Muhammad Zahir & Feng, Yongzhong & Yang, Gaihe, 2019. "Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean," Agricultural Water Management, Elsevier, vol. 211(C), pages 16-25.
    12. Balwinder-Singh & Eberbach, P.L. & Humphreys, E. & Kukal, S.S., 2011. "The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India," Agricultural Water Management, Elsevier, vol. 98(12), pages 1847-1855, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Matisic & Marko Reljic & Ivan Dugan & Paulo Pereira & Vilim Filipovic & Lana Filipovic & Vedran Krevh & Igor Bogunovic, 2023. "Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut ( Corylus avellana L.) in Croatia," Sustainability, MDPI, vol. 15(21), pages 1-15, October.
    2. Yong Luo & Dianpeng Chen & Xiaoguo Wang, 2023. "Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China," Sustainability, MDPI, vol. 15(20), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kader, M.A. & Nakamura, K. & Senge, M. & Mojid, M.A. & Kawashima, S., 2019. "Soil hydro-thermal regimes and water use efficiency of rain-fed soybean (Glycine max) as affected by organic mulches," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Mukherjee, A. & Sarkar, S. & Chakraborty, P.K., 2012. "Marginal analysis of water productivity function of tomato crop grown under different irrigation regimes and mulch managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 121-127.
    3. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    4. Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    5. Liao, Yang & Cao, Hong-Xia & Liu, Xing & Li, Huang-Tao & Hu, Qing-Yang & Xue, Wen-Kai, 2021. "By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas," Agricultural Water Management, Elsevier, vol. 253(C).
    6. Li, Rui & Chai, Shouxi & Chai, Yuwei & Li, Yawei & Lan, Xuemei & Ma, Jiantao & Cheng, Hongbo & Chang, Lei, 2021. "Mulching optimizes water consumption characteristics and improves crop water productivity on the semi-arid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 254(C).
    7. Leduc, Gaëlle & Billaudet, Larissa & Engström, Ebba & Hansson, Helena & Ryan, Mary, 2023. "Farmers' perceived values in conventional and organic farming: A comparison between French, Irish and Swedish farmers using the Means-end chain approach," Ecological Economics, Elsevier, vol. 207(C).
    8. Liu, Ruifeng & ,, 2021. "What We Can Learn from the Interactions of Food Traceable Attributes? a Case Study of Fuji Apple in China," 2021 Conference, August 17-31, 2021, Virtual 315916, International Association of Agricultural Economists.
    9. Cloé Garnache & Scott M. Swinton & Joseph A. Herriges & Frank Lupi & R. Jan Stevenson, 2016. "Solving the Phosphorus Pollution Puzzle: Synthesis and Directions for Future Research," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(5), pages 1334-1359.
    10. Balwinder-Singh, & Eberbach, P.L. & Humphreys, E., 2014. "Simulation of the evaporation of soil water beneath a wheat crop canopy," Agricultural Water Management, Elsevier, vol. 135(C), pages 19-26.
    11. Ohler, Adrienne M. & Billger, Sherrilyn M., 2014. "Does environmental concern change the tragedy of the commons? Factors affecting energy saving behaviors and electricity usage," Ecological Economics, Elsevier, vol. 107(C), pages 1-12.
    12. Dharminder & Ram Kumar Singh & Vishal Kumar & Biswajit Pramanick & Walaa F. Alsanie & Ahmed Gaber & Akbar Hossain, 2021. "The Use of Municipal Solid Waste Compost in Combination with Proper Irrigation Scheduling Influences the Productivity, Microbial Activity and Water Use Efficiency of Direct Seeded Rice," Agriculture, MDPI, vol. 11(10), pages 1-15, September.
    13. Chen, Xuqi & Shen, Meng & Gao, Zhifeng, 2017. "Impact of Intra-respondent Variations in Attribute Attendance on Consumer Preference in Food Choice," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258509, Agricultural and Applied Economics Association.
    14. Jovanovic, N. & Pereira, L.S. & Paredes, P. & Pôças, I. & Cantore, V. & Todorovic, M., 2020. "A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods," Agricultural Water Management, Elsevier, vol. 239(C).
    15. Hana Stojanová & Veronika Blašková & Michaela Lněničková, 2018. "The Importance of Factors Affecting the Entry of Entrepreneurial Subjects to Organic Farming in the Czech Republic," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(4), pages 1017-1024.
    16. Xiaoyi Jiang & Dandong Mao & Min Zhu & Xingchun Wang & Chunyan Li & Xinkai Zhu & Wenshan Guo & Jinfeng Ding, 2022. "Evaluating the Waterlogging Tolerance of Wheat Cultivars during the Early Growth Stage Using the Comprehensive Evaluation Value and Digital Image Analysis," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    17. Caroline Roussy & Aude Ridier & Karim Chaïb, 2014. "Adoption d’innovations par les agriculteurs : rôle des perceptions et des préférences," Post-Print hal-01123427, HAL.
    18. Md. Samiul Alim & Mst. Sharmin Sultana, 2023. "Causes of farmers’ aversion to organic vegetable production in Shyamnagar and Kaligonj Upazilla of Bangladesh," International Journal of Agricultural Research, Innovation and Technology (IJARIT), IJARIT Research Foundation, vol. 13(1), June.
    19. Phu Nguyen-Van & Anne Stenger & Tuyen Tiet, 2021. "Social incentive factors in interventions promoting sustainable behaviors: A meta-analysis," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-27, December.
    20. Wollni, Meike & Andersson, Camilla, 2014. "Spatial patterns of organic agriculture adoption: Evidence from Honduras," Ecological Economics, Elsevier, vol. 97(C), pages 120-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:13:p:10442-:d:1185486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.