IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v211y2019icp16-25.html
   My bibliography  Save this article

Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean

Author

Listed:
  • Akhtar, Kashif
  • Wang, Weiyu
  • Khan, Ahmad
  • Ren, Guangxin
  • Afridi, Muhammad Zahir
  • Feng, Yongzhong
  • Yang, Gaihe

Abstract

In North-west china, the soybean (Glycine max L. Merr.) is grown in June, when the climate is dry, and soil has limited moisture contents. Moisture deficiency limits the soybean biomass. We studied the effects of wheat straw mulching and nitrogen on soybean growth, physiology and soil properties in three-year field experiments. The treatments included three straw mulching i.e. S1 (0 kg ha−1), S2 (3000 kg ha−1) and S3 (6000 kg ha−1), and three nitrogen rates i.e. N1 (0 kg N ha−1), N2 (21.6 kg N ha−1), and N3 (27 kg N ha−1). Full mulching (S3) significantly increased moisture retention (7.4%) and decrease soil temperature (3.0%) in 0–20 cm soil depth, increased photosynthesis, SPAD-value, leaf area, leaf area index, growth, and soybean grain yield (20.8%) over no-mulching (S1). The S3 improved the roots mass, nodules number and weight than S1. The application of 27 kg N ha−1 or 100% N fertilizer (N3) had significantly increased photosynthesis, SPAD-value, growth, and biomass and seed yield of soybean over no-N application (N1). It was concluded that using straw mulching (6 Mg ha−1) can change the soil hydrothermal regime for provision of favorable condition for soybean growth when 27 kg N ha−1 was used in semi-arid condition of North-west China.

Suggested Citation

  • Akhtar, Kashif & Wang, Weiyu & Khan, Ahmad & Ren, Guangxin & Afridi, Muhammad Zahir & Feng, Yongzhong & Yang, Gaihe, 2019. "Wheat straw mulching offset soil moisture deficient for improving physiological and growth performance of summer sown soybean," Agricultural Water Management, Elsevier, vol. 211(C), pages 16-25.
  • Handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:16-25
    DOI: 10.1016/j.agwat.2018.09.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418305559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.09.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali, Shahzad & Jan, Amanullah & Manzoor, & Sohail, Amir & Khan, Ahmad & Khan, Muhammad Ijaz & Inamullah, & Zhang, Jiahua & Daur, Ihsanullah, 2018. "Soil amendments strategies to improve water-use efficiency and productivity of maize under different irrigation conditions," Agricultural Water Management, Elsevier, vol. 210(C), pages 88-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaur, Lovepreet & Kaur, Anureet & Brar, A.S., 2021. "Water use efficiency of green gram (Vigna radiata L.) impacted by paddy straw mulch and irrigation regimes in north-western India," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    3. Wenguang Chen & Bangbang Zhang & Xiangbin Kong & Liangyou Wen & Yubo Liao & Lingxin Kong, 2022. "Soybean Production and Spatial Agglomeration in China from 1949 to 2019," Land, MDPI, vol. 11(5), pages 1-17, May.
    4. Alfonso, C. & Barbieri, P.A. & Hernández, M.D. & Lewczuk, N.A & Martínez, J.P. & Echarte, M.M. & Echarte, L., 2020. "Water productivity in soybean following a cover crop in a humid environment," Agricultural Water Management, Elsevier, vol. 232(C).
    5. Kader, M.A. & Nakamura, K. & Senge, M. & Mojid, M.A. & Kawashima, S., 2019. "Soil hydro-thermal regimes and water use efficiency of rain-fed soybean (Glycine max) as affected by organic mulches," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Li, Yue & Chen, Hao & Feng, Hao & Dong, Qin’ge & Wu, Wenjie & Zou, Yufeng & Chau, Henry Wai & Siddique, Kadambot H.M., 2020. "Influence of straw incorporation on soil water utilization and summer maize productivity: A five-year field study on the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 233(C).
    7. Xuemei Lan & Shouxi Chai & Jeffrey A. Coulter & Hongbo Cheng & Lei Chang & Caixia Huang & Rui Li & Yuwei Chai & Yawei Li & Jiantao Ma & Li Li, 2020. "Maize Straw Strip Mulching as a Replacement for Plastic Film Mulching in Maize Production in a Semiarid Region," Sustainability, MDPI, vol. 12(15), pages 1-26, August.
    8. Fang, Qin & Wang, Yanzhe & Uwimpaye, Fasilate & Yan, Zongzheng & Li, Lu & Liu, Xiuwei & Shao, Liwei, 2021. "Pre-sowing soil water conditions and water conservation measures affecting the yield and water productivity of summer maize," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Cheng, Minghan & Li, Binbin & Jiao, Xiyun & Huang, Xiao & Fan, Haiyan & Lin, Rencai & Liu, Kaihua, 2022. "Using multimodal remote sensing data to estimate regional-scale soil moisture content: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    2. Cucci, Giovanna & Lacolla, Giovanni & Boari, Francesca & Mastro, Mario Alberto & Cantore, Vito, 2019. "Effect of water salinity and irrigation regime on maize (Zea mays L.) cultivated on clay loam soil and irrigated by furrow in Southern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 118-124.
    3. Bai, Mengjie & Tao, Qibo & Zhang, Zuxin & Lang, Shuqing & Li, Junhui & Chen, Dali & Wang, Yanrong & Hu, Xiaowen, 2023. "Effect of drip irrigation on seed yield, seed quality and water use efficiency of Hedysarum fruticosum in the arid region of Northwest China," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Li, Yue & Xu, Xu & Hu, Min & Chen, Zhijun & Tan, Junwei & Liu, Liu & Xiong, Yunwu & Huang, Quanzhong & Huang, Guanhua, 2023. "Modeling water−salt−nitrogen dynamics and crop growth of saline maize farmland in Northwest China: Searching for appropriate irrigation and N fertilization strategies," Agricultural Water Management, Elsevier, vol. 282(C).
    5. Pang, Jiaping & Li, Hengpeng & Yu, Fuhe & Geng, Jianwei & Zhang, Wangshou, 2022. "Environmental controls on water use efficiency in a hilly tea plantation in southeast China," Agricultural Water Management, Elsevier, vol. 269(C).
    6. Alfonso, C. & Barbieri, P.A. & Hernández, M.D. & Lewczuk, N.A & Martínez, J.P. & Echarte, M.M. & Echarte, L., 2020. "Water productivity in soybean following a cover crop in a humid environment," Agricultural Water Management, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:211:y:2019:i:c:p:16-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.