IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v115y2012icp242-251.html
   My bibliography  Save this article

Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies

Author

Listed:
  • Siyal, Altaf A.
  • Bristow, Keith L.
  • Šimůnek, Jirka

Abstract

Inappropriate soil, water and fertilizer management in irrigated agriculture can result in environmental problems, including groundwater pollution with nitrates. Furrow irrigation is widely used around the world and is considered as a major source of nitrate leaching. Improved soil, water and fertilizer management practices are needed to improve the production and environmental performance of furrow irrigated agriculture. This paper describes results of a simulation study using HYDRUS-2D to assess opportunities to improve irrigation efficiency and reduce the risk of nitrate leaching from furrow irrigated systems. It focuses on the commonly used practice in Pakistan where irrigation water supply is turned off once the water level in the furrow has reached a pre-determined depth. The study involved analysing the impact of fertilizer placement on nitrate leaching from a loamy soil subjected to three different soil surface treatments. Fertilizer placements included placing the fertilizer on the bottom of the furrow (P1), sides of the furrow (P2), bottom and sides of the furrow (P3), on the sides of the furrow near to the ridge top (P4), and on the surface in the middle of the ridge top (P5). The soil surface management treatments included the original soil (So), compacting the bottom of the furrow (Sc) and placing a plastic sheet on the bottom of the furrow (Sp). Results showed water savings varied with application rate and soil surface management, with soil surface management strategies Sc and Sp yielding water savings of 17% and 28% relative to So for a water application rate of 1800Lh−1 for a 100m long furrow. Leaching of nitrogen for this case was reduced from 33% for So with fertilizer placement P1 to 1% by compacting the bottom of the furrow (Sc) and to zero loss by placing a plastic sheet on the bottom of the furrow (Sp). By changing the fertilizer placement for So from P1 to P2, P3, P4, and P5, nitrogen leaching was reduced from 33% to 2%, 15%, 0%, and 0%, respectively. Results of this study demonstrate that placing nitrogen fertilizer on the sides of the furrow near the ridge top (P4) or on top of the furrow at the centre of the ridge (P5) maximize the retention of nitrogen fertilizer within the root zone. Results of this study also demonstrate that enhancements in irrigation efficiency, particularly in coarser soils with high infiltration rates can be achieved through compacting the bottom of the furrow or by placing a plastic sheet on the bottom of the furrow before applying irrigation.

Suggested Citation

  • Siyal, Altaf A. & Bristow, Keith L. & Šimůnek, Jirka, 2012. "Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies," Agricultural Water Management, Elsevier, vol. 115(C), pages 242-251.
  • Handle: RePEc:eee:agiwat:v:115:y:2012:i:c:p:242-251
    DOI: 10.1016/j.agwat.2012.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412002405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ayars, J. E. & Phene, C. J. & Hutmacher, R. B. & Davis, K. R. & Schoneman, R. A. & Vail, S. S. & Mead, R. M., 1999. "Subsurface drip irrigation of row crops: a review of 15 years of research at the Water Management Research Laboratory," Agricultural Water Management, Elsevier, vol. 42(1), pages 1-27, September.
    2. Siyal, A.A. & Skaggs, T.H., 2009. "Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation," Agricultural Water Management, Elsevier, vol. 96(6), pages 893-904, June.
    3. Crevoisier, D. & Popova, Z. & Mailhol, J.C. & Ruelle, P., 2008. "Assessment and simulation of water and nitrogen transfer under furrow irrigation," Agricultural Water Management, Elsevier, vol. 95(4), pages 354-366, April.
    4. Mailhol, J.C. & Crevoisier, D. & Triki, K., 2007. "Impact of water application conditions on nitrogen leaching under furrow irrigation: Experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 87(3), pages 275-284, February.
    5. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    6. Crabtree, R. J. & Yassin, A. A. & Kargougou, I. & McNew, R. W., 1985. "Effects of alternate-furrow irrigation: Water conservation on the yields of two soybean cultivars," Agricultural Water Management, Elsevier, vol. 10(3), pages 253-264, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jungai & Liu, Hongbin & Wang, Hongyuan & Luo, Jiafa & Zhang, Xuejun & Liu, Zhaohui & Zhang, Yitao & Zhai, Limei & Lei, Qiuliang & Ren, Tianzhi & Li, Yan & Bashir, Muhammad Amjad, 2018. "Managing irrigation and fertilization for the sustainable cultivation of greenhouse vegetables," Agricultural Water Management, Elsevier, vol. 210(C), pages 354-363.
    2. Nguyen, Van Thang & Huynh, Nguyen Phong Thu & Vu, Ngoc Ba & Le, Cong Hao, 2021. "Long-term accumulation of 226Ra in some agricultural soils based on model assessment," Agricultural Water Management, Elsevier, vol. 243(C).
    3. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    4. Mohammadi, Adel & Besharat, Sina & Abbasi, Fariborz, 2019. "Effects of irrigation and fertilization management on reducing nitrogen losses and increasing corn yield under furrow irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 1116-1129.
    5. Bristow, Keith L. & Šimůnek, Jirka & Helalia, Sarah A. & Siyal, Altaf A., 2020. "Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems," Agricultural Water Management, Elsevier, vol. 232(C).
    6. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Li, Yong & Šimůnek, Jirka & Jing, Longfei & Zhang, Zhentin & Ni, Lixiao, 2014. "Evaluation of water movement and water losses in a direct-seeded-rice field experiment using Hydrus-1D," Agricultural Water Management, Elsevier, vol. 142(C), pages 38-46.
    8. Macdonald, B.C.T. & Nachimuthu, G. & Chang, Y.F & Nadelko, A.J. & Tuomi, S. & Watkins, M., 2020. "Nitrogen composition in furrow irrigated run-off water," Agricultural Water Management, Elsevier, vol. 242(C).
    9. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
    10. Liu, Kun & Huang, Guanhua & Xu, Xu & Xiong, Yunwu & Huang, Quanzhong & Šimůnek, Jiří, 2019. "A coupled model for simulating water flow and solute transport in furrow irrigation," Agricultural Water Management, Elsevier, vol. 213(C), pages 792-802.
    11. Iqbal, Shahid & Guber, Andrey K. & Khan, Haroon Zaman, 2016. "Estimating nitrogen leaching losses after compost application in furrow irrigated soils of Pakistan using HYDRUS-2D software," Agricultural Water Management, Elsevier, vol. 168(C), pages 85-95.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karandish, Fatemeh & Šimůnek, Jiří, 2017. "Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS," Agricultural Water Management, Elsevier, vol. 193(C), pages 174-190.
    2. Iqbal, Shahid & Guber, Andrey K. & Khan, Haroon Zaman, 2016. "Estimating nitrogen leaching losses after compost application in furrow irrigated soils of Pakistan using HYDRUS-2D software," Agricultural Water Management, Elsevier, vol. 168(C), pages 85-95.
    3. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    4. Karandish, Fatemeh & Šimůnek, Jiří, 2019. "A comparison of the HYDRUS (2D/3D) and SALTMED models to investigate the influence of various water-saving irrigation strategies on the maize water footprint," Agricultural Water Management, Elsevier, vol. 213(C), pages 809-820.
    5. Cai, Yaohui & Wu, Pute & Zhang, Lin & Zhu, Delan & Chen, Junying & Wu, ShouJun & Zhao, Xiao, 2017. "Simulation of soil water movement under subsurface irrigation with porous ceramic emitter," Agricultural Water Management, Elsevier, vol. 192(C), pages 244-256.
    6. Tan, Xuezhi & Shao, Dongguo & Gu, Wenquan & Liu, Huanhuan, 2015. "Field analysis of water and nitrogen fate in lowland paddy fields under different water managements using HYDRUS-1D," Agricultural Water Management, Elsevier, vol. 150(C), pages 67-80.
    7. Hou, Zhenan & Chen, Weiping & Li, Xiao & Xiu, Lin & Wu, Laosheng, 2009. "Effects of salinity and fertigation practice on cotton yield and 15N recovery," Agricultural Water Management, Elsevier, vol. 96(10), pages 1483-1489, October.
    8. van der Laan, M. & Annandale, J.G. & Bristow, K.L. & Stirzaker, R.J. & Preez, C.C. du & Thorburn, P.J., 2014. "Modelling nitrogen leaching: Are we getting the right answer for the right reason?," Agricultural Water Management, Elsevier, vol. 133(C), pages 74-80.
    9. Karandish, Fatemeh & Šimůnek, Jiří, 2018. "An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS," Agricultural Water Management, Elsevier, vol. 208(C), pages 67-82.
    10. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    11. Bristow, Keith L. & Šimůnek, Jirka & Helalia, Sarah A. & Siyal, Altaf A., 2020. "Numerical simulations of the effects furrow surface conditions and fertilizer locations have on plant nitrogen and water use in furrow irrigated systems," Agricultural Water Management, Elsevier, vol. 232(C).
    12. Doltra, J. & Muñoz, P., 2010. "Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models," Agricultural Water Management, Elsevier, vol. 97(2), pages 277-285, February.
    13. Komlan Koudahe & Aleksey Y. Sheshukov & Jonathan Aguilar & Koffi Djaman, 2021. "Irrigation-Water Management and Productivity of Cotton: A Review," Sustainability, MDPI, vol. 13(18), pages 1-21, September.
    14. Himanshu, Sushil Kumar & Ale, Srinivasulu & Bordovsky, James & Darapuneni, Murali, 2019. "Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains," Agricultural Water Management, Elsevier, vol. 225(C).
    15. Haomiao Cheng & Qilin Yu & Mohmed A. M. Abdalhi & Fan Li & Zhiming Qi & Tengyi Zhu & Wei Cai & Xiaoping Chen & Shaoyuan Feng, 2022. "RZWQM2 Simulated Drip Fertigation Management to Improve Water and Nitrogen Use Efficiency of Maize in a Solar Greenhouse," Agriculture, MDPI, vol. 12(5), pages 1-14, May.
    16. Phogat, V. & Skewes, M.A. & Cox, J.W. & Alam, J. & Grigson, G. & Šimůnek, J., 2013. "Evaluation of water movement and nitrate dynamics in a lysimeter planted with an orange tree," Agricultural Water Management, Elsevier, vol. 127(C), pages 74-84.
    17. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    18. Phogat, V. & Skewes, M.A. & McCarthy, M.G. & Cox, J.W. & Šimůnek, J. & Petrie, P.R., 2017. "Evaluation of crop coefficients, water productivity, and water balance components for wine grapes irrigated at different deficit levels by a sub-surface drip," Agricultural Water Management, Elsevier, vol. 180(PA), pages 22-34.
    19. Zhang, You-Liang & Feng, Shao-Yuan & Wang, Feng-Xin & Binley, Andrew, 2018. "Simulation of soil water flow and heat transport in drip irrigated potato field with raised beds and full plastic-film mulch in a semiarid area," Agricultural Water Management, Elsevier, vol. 209(C), pages 178-187.
    20. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:115:y:2012:i:c:p:242-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.