IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v271y2022ics0378377422003547.html
   My bibliography  Save this article

Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution

Author

Listed:
  • Slamini, Maryam
  • Sbaa, Mohamed
  • Arabi, Mourad
  • Darmous, Ahmed

Abstract

Water availability is the most limiting factor for the crop production sector and one of the main regulators of the spatial distribution of plants. Agriculture consumes more than two-thirds of the planet's total fresh water; this high consumption causes significant conflicts in terms of freshwater allocation between agriculture and other economic sectors. In addition, conventional irrigation cannot be sustained in many parts of the world due to rapid depletion of water resources, thus, it is considered a luxury use of water. It is noted that in recent years the methods of irrigation water application have been improved. Currently research has been directed towards irrigation strategies that reduce water applications "Deficit Irrigation strategies (DI)" and allowing the efficiency of its use to be increased without affecting plant growth or yield. Partial Root-zone Drying (PRD) is an effective irrigation method that saves water although it can affect the root activity of plants through the heterogeneous distribution of moisture in the soil. Indeed the basic underlying theory of this technique is the use of the hormonal response of the roots to water stress, which can induce physiological reactions in the aerial parts of the plant, by a reduction in stomatal conductance and transpiration. Hence, the plant can limit its water losses due to transpiration, with a non-significant reduction in yield; moreover, this irrigation technique is of paramount importance in terms of minimizing groundwater pollution by reducing the return flow of irrigation water and consequently significantly reducing the leaching of agrochemical inputs to groundwater. This work aims to clarify the origin of PRD irrigation and to analyze some physiological aspects of plants grown under this technique, as well as its environmentally friendly aspect. Then, to synthesize some research work on improving water productivity and its efficiency in citrus crops.

Suggested Citation

  • Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003547
    DOI: 10.1016/j.agwat.2022.107807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422003547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Consoli, S. & Stagno, F. & Roccuzzo, G. & Cirelli, G.L. & Intrigliolo, F., 2014. "Sustainable management of limited water resources in a young orange orchard," Agricultural Water Management, Elsevier, vol. 132(C), pages 60-68.
    2. Hutton, R.J. & Loveys, B.R., 2011. "A partial root zone drying irrigation strategy for citrus--Effects on water use efficiency and fruit characteristics," Agricultural Water Management, Elsevier, vol. 98(10), pages 1485-1496, August.
    3. Asare, D. K. & Sammis, T. W. & Smeal, D. & Zhang, H. & Sitze, D. O., 2001. "Modeling an irrigation management strategy for minimizing the leaching of atrazine," Agricultural Water Management, Elsevier, vol. 48(3), pages 225-238, June.
    4. De la Hera, M.L. & Romero, P. & Gomez-Plaza, E. & Martinez, A., 2007. "Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions?," Agricultural Water Management, Elsevier, vol. 87(3), pages 261-274, February.
    5. Chowdary, V.M. & Rao, N.H. & Sarma, P.B.S., 2005. "Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects," Agricultural Water Management, Elsevier, vol. 75(3), pages 194-225, July.
    6. Feng, Zhao-Zhong & Wang, Xiao-Ke & Feng, Zong-Wei, 2005. "Soil N and salinity leaching after the autumn irrigation and its impact on groundwater in Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 71(2), pages 131-143, February.
    7. Fetouani, S. & Sbaa, M. & Vanclooster, M. & Bendra, B., 2008. "Assessing ground water quality in the irrigated plain of Triffa (north-east Morocco)," Agricultural Water Management, Elsevier, vol. 95(2), pages 133-142, February.
    8. Du, Taisheng & Kang, Shaozhong & Zhang, Jianhua & Li, Fusheng & Yan, Boyuan, 2008. "Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 95(6), pages 659-668, June.
    9. Costa, J. L. & Massone, H. & Martinez, D. & Suero, E. E. & Vidal, C. M. & Bedmar, F., 2002. "Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone," Agricultural Water Management, Elsevier, vol. 57(1), pages 33-47, September.
    10. Li, Xiaojie & Kang, Shaozhong & Zhang, Xiaotao & Li, Fusheng & Lu, Hongna, 2018. "Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2," Agricultural Water Management, Elsevier, vol. 195(C), pages 71-83.
    11. Wang, Yadong & Liu, Chun & Cui, Pengfei & Su, Derong, 2021. "Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Marcella Michela Giuliani & Eugenio Nardella & Anna Gagliardi & Giuseppe Gatta, 2017. "Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions," Sustainability, MDPI, vol. 9(12), pages 1-15, November.
    13. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field-grown potatoes: Gas exchange and xylem [ABA]," Agricultural Water Management, Elsevier, vol. 97(10), pages 1486-1494, October.
    14. Du, Taisheng & Kang, Shaozhong & Sun, Jingsheng & Zhang, Xiying & Zhang, Jianhua, 2010. "An improved water use efficiency of cereals under temporal and spatial deficit irrigation in north China," Agricultural Water Management, Elsevier, vol. 97(1), pages 66-74, January.
    15. Abrisqueta, J.M. & Mounzer, O. & Álvarez, S. & Conejero, W. & Garci­a-Orellana, Y. & Tapia, L.M. & Vera, J. & Abrisqueta, I. & Ruiz-Sánchez, M.C., 2008. "Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation," Agricultural Water Management, Elsevier, vol. 95(8), pages 959-967, August.
    16. Zegbe, J. A. & Behboudian, M. H. & Clothier, B. E., 2004. "Partial rootzone drying is a feasible option for irrigating processing tomatoes," Agricultural Water Management, Elsevier, vol. 68(3), pages 195-206, August.
    17. Alrajhi, Abdullah & Beecham, Simon & Hassanli, Ali, 2017. "Effects of partial root-zone drying irrigation and water quality on soil physical and chemical properties," Agricultural Water Management, Elsevier, vol. 182(C), pages 117-125.
    18. Siyal, Altaf A. & Bristow, Keith L. & Šimůnek, Jirka, 2012. "Minimizing nitrogen leaching from furrow irrigation through novel fertilizer placement and soil surface management strategies," Agricultural Water Management, Elsevier, vol. 115(C), pages 242-251.
    19. Ghrab, Mohamed & Gargouri, Kamel & Bentaher, Hatem & Chartzoulakis, Kostas & Ayadi, Mohamed & Ben Mimoun, Mehdi & Masmoudi, Mohamed Moncef & Ben Mechlia, Netij & Psarras, Georgios, 2013. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate," Agricultural Water Management, Elsevier, vol. 123(C), pages 1-11.
    20. Zhang, Jing & Wang, Qian & Pang, Xiao Pan & Xu, Hai Peng & Wang, Juan & Zhang, Wen Na & Guo, Zheng Gang, 2021. "Effect of partial root-zone drying irrigation (PRDI) on the biomass, water productivity and carbon, nitrogen and phosphorus allocations in different organs of alfalfa," Agricultural Water Management, Elsevier, vol. 243(C).
    21. Alrajhi, A. & Beecham, S. & Bolan, Nanthi S. & Hassanli, A., 2015. "Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production," Agricultural Water Management, Elsevier, vol. 161(C), pages 127-135.
    22. Yang, Lijuan & Qu, Hui & Zhang, Yulong & Li, Fusheng, 2012. "Effects of partial root-zone irrigation on physiology, fruit yield and quality and water use efficiency of tomato under different calcium levels," Agricultural Water Management, Elsevier, vol. 104(C), pages 89-94.
    23. Zhang, Huimeng & Xiong, Yunwu & Huang, Guanhua & Xu, Xu & Huang, Quanzhong, 2017. "Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District," Agricultural Water Management, Elsevier, vol. 179(C), pages 205-214.
    24. Yactayo, Wendy & Ramírez, David A. & Gutiérrez, Raymundo & Mares, Víctor & Posadas, Adolfo & Quiroz, Roberto, 2013. "Effect of partial root-zone drying irrigation timing on potato tuber yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 123(C), pages 65-70.
    25. Cassel Sharmasarkar, F. & Sharmasarkar, S. & Miller, S. D. & Vance, G. F. & Zhang, R., 2001. "Assessment of drip and flood irrigation on water and fertilizer use efficiencies for sugarbeets," Agricultural Water Management, Elsevier, vol. 46(3), pages 241-251, January.
    26. Kang, Shaozhong & Liang, Zongsuo & Pan, Yinhua & Shi, Peize & Zhang, Jianhua, 2000. "Alternate furrow irrigation for maize production in an arid area," Agricultural Water Management, Elsevier, vol. 45(3), pages 267-274, August.
    27. Green, S. R. & Clothier, B. E. & McLeod, D. J., 1997. "The response of sap flow in apple roots to localised irrigation," Agricultural Water Management, Elsevier, vol. 33(1), pages 63-78, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    2. Liu, Kai & Liao, Huan & Hao, Haibo & Hou, Zhenan, 2024. "Water and nitrogen supply at spatially distinct locations improves cotton water productivity and nitrogen use efficiency and yield under drip irrigation," Agricultural Water Management, Elsevier, vol. 296(C).
    3. Chinchu Mohan & Andrew W. Western & Madan Kumar Jha & Yongping Wei, 2022. "Global Assessment of Groundwater Stress Vis-à-Vis Sustainability of Irrigated Food Production," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    4. Chen, Yu & Zhang, Jian-Hua & Chen, Mo-Xian & Zhu, Fu-Yuan & Song, Tao, 2023. "Optimizing water conservation and utilization with a regulated deficit irrigation strategy in woody crops: A review," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    2. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Zhang, Shaohui & Liao, Zhenqi & Zhang, Fucang & Wang, Yanli, 2021. "A global meta-analysis of yield and water use efficiency of crops, vegetables and fruits under full, deficit and alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 248(C).
    3. Kang, Jian & Hao, Xinmei & Zhou, Huiping & Ding, Risheng, 2021. "An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: Present and prospect," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    5. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    6. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
    7. Tang, Li-Song & Li, Yan & Zhang, Jianhua, 2010. "Partial rootzone irrigation increases water use efficiency, maintains yield and enhances economic profit of cotton in arid area," Agricultural Water Management, Elsevier, vol. 97(10), pages 1527-1533, October.
    8. Abdolahipour, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2018. "Time and amount of supplemental irrigation at different distances from tree trunks influence on soil water distribution, evaporation and evapotranspiration in rainfed fig orchards," Agricultural Water Management, Elsevier, vol. 203(C), pages 322-332.
    9. Jingwei Wang & Yuan Li & Wenquan Niu, 2020. "Deficit Alternate Drip Irrigation Increased Root-Soil-Plant Interaction, Tomato Yield, and Quality," IJERPH, MDPI, vol. 17(3), pages 1-18, January.
    10. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    11. Li, Fusheng & Wei, Caihui & Zhang, Fucang & Zhang, Jianhua & Nong, Mengling & Kang, Shaozhong, 2010. "Water-use efficiency and physiological responses of maize under partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 97(8), pages 1156-1164, August.
    12. Romero, Pascual & Muñoz, Rocío Gil & Fernández-Fernández, J.I. & del Amor, Francisco M. & Martínez-Cutillas, Adrián & García-García, José, 2015. "Improvement of yield and grape and wine composition in field-grown Monastrell grapevines by partial root zone irrigation, in comparison with regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 149(C), pages 55-73.
    13. Wei, Zhenhua & Du, Taisheng & Zhang, Juan & Xu, Shujun & Cambre, Paul J. & Davies, William J., 2016. "Carbon isotope discrimination shows a higher water use efficiency under alternate partial root-zone irrigation of field-grown tomato," Agricultural Water Management, Elsevier, vol. 165(C), pages 33-43.
    14. Hou, Jingxiang & Liu, Xuezhi & Zhang, Jiarui & Wei, Zhenhua & Ma, Yingying & Wan, Heng & Liu, Jie & Cui, Bingjing & Zong, Yuzheng & Chen, Yiting & Liang, Kehao & Liu, Fulai, 2023. "Combined application of biochar and partial root-zone drying irrigation improves water relations and water use efficiency of cotton plants under salt stress," Agricultural Water Management, Elsevier, vol. 290(C).
    15. Mahmoud S. Hashem & Wei Guo & Xuebin Qi & Ping Li, 2022. "Assessing the Effect of Irrigation with Reclaimed Water Using Different Irrigation Techniques on Tomatoes Quality Parameters," Sustainability, MDPI, vol. 14(5), pages 1-19, March.
    16. Barrios-Masias, Felipe H. & Jackson, Louise E., 2016. "Increasing the effective use of water in processing tomatoes through alternate furrow irrigation without a yield decrease," Agricultural Water Management, Elsevier, vol. 177(C), pages 107-117.
    17. Indranil Samui & Milan Skalicky & Sukamal Sarkar & Koushik Brahmachari & Sayan Sau & Krishnendu Ray & Akbar Hossain & Argha Ghosh & Manoj Kumar Nanda & Richard W. Bell & Mohammed Mainuddin & Marian Br, 2020. "Yield Response, Nutritional Quality and Water Productivity of Tomato ( Solanum lycopersicum L.) are Influenced by Drip Irrigation and Straw Mulch in the Coastal Saline Ecosystem of Ganges Delta, India," Sustainability, MDPI, vol. 12(17), pages 1-21, August.
    18. Sarker, Khokan Kumer & Hossain, Akbar & Timsina, Jagadish & Biswas, Sujit Kumar & Kundu, Bimal Chandra & Barman, Alak & Murad, Khandakar Faisal Ibn & Akter, Farzana, 2019. "Yield and quality of potato tuber and its water productivity are influenced by alternate furrow irrigation in a raised bed system," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    19. Lu, Jia & Shao, Guangcheng & Gao, Yang & Zhang, Kun & Wei, Qun & Cheng, Jifan, 2021. "Effects of water deficit combined with soil texture, soil bulk density and tomato variety on tomato fruit quality: A meta-analysis," Agricultural Water Management, Elsevier, vol. 243(C).
    20. Jeet Chand & Guna Hewa & Ali Hassanli & Baden Myers, 2020. "Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse," Agriculture, MDPI, vol. 10(7), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:271:y:2022:i:c:s0378377422003547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.