IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v163y2016icp146-158.html
   My bibliography  Save this article

Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes

Author

Listed:
  • Parvizi, Hossein
  • Sepaskhah, Ali Reza
  • Ahmadi, Seyed Hamid

Abstract

This study evaluated the effects of full irrigation (FI, 100% ETC), partial root zone drying and deficit irrigation with mild (75%ETC) and severe (50% ETC) water stress on the physiological and growth behavior of pomegranate trees in southern Iran in 2011 and 2012. The experiment was set up as a split plot design in completely randomized blocks design with three replications. Results showed that the stem water potential (ψstem) was directly related to the soil water deficit (SWD), and it varied from −2.07 to −3.27MPa in 2011 and −1.67 to −3.23MPa in 2012. In all times of measurements, higher values of stomatal conductance (gs), net photosynthesis (An) and leaf scale transpiration (Tr) were obtained in FI and mild water stress treatments (An: 3.15–12.64μmolm−2s−1, gs: 0.032–0.129molm2s−1 and Tr: 2.72–9.48mmolm2s−1) in comparion with those obtained in the severe water stress treatments (An: 2.11–11.81μmolm−2s−1, gs: 0.021–0.11molm2s−1 and Tr: 1.89–7.58mmolm2s−1). Results generally showed low values of gs in the Rabab cultivar in the studied arid area. Furthermore, the hydraulic signaling (ψstem) in response to the water stress and weather conditions controlled the seasonal variation of gs. Transpiration efficiency (TE) increased with increasing the degree of water stress and PRD showed higher TE (1.17–1.18μmolmmol−1) than that in DI strategies (1.06–1.07μmolmmol−1). Furthermore, the value of intrinsic water use efficiency (IWUE) in FI (85μmolmol−1) was statistically lower than that obtained in mild (PRD75, DI75) and severe (PRD50, DI50) water stress treatments (87.8–89.9μmolmol−1). Different irrigation strategies did not significantly affect the fruit growth rate, and its maximum values occurred at about 170 DAB (0.27–0.35mmd−1) in all irrigation strategies. The LAI values in FI and mild water stress strategies were significantly different compared with those in the severe water stress treatments. For all irrigation strategies, the maximum LAI values occurred at flowering stage (68 DAB), and was 6.09 and 6.15 (FI), 5.97 and 6.04 (DI75), 6.33 and 6.64 (PRD75), 4.60 and 4.82 (DI50) and 4.91 and 5.03m2m−2 (PRD50) in 2011 and 2012, respectively. In conclusion, PRD75 is the recommended, applicable water-saving strategy and good alternative with respect to FI among other irrigation managements when water resources are limited in order to increase TE and IWUE while other physiological and growth parameters are maintained at an acceptable level.

Suggested Citation

  • Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
  • Handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:146-158
    DOI: 10.1016/j.agwat.2015.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377415301116
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2015.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hutton, R.J. & Loveys, B.R., 2011. "A partial root zone drying irrigation strategy for citrus--Effects on water use efficiency and fruit characteristics," Agricultural Water Management, Elsevier, vol. 98(10), pages 1485-1496, August.
    2. Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (olea europaea L., cv. Morisca) I. - Growth and water relations," Agricultural Water Management, Elsevier, vol. 98(6), pages 941-949, April.
    3. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    4. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field-grown potatoes: Gas exchange and xylem [ABA]," Agricultural Water Management, Elsevier, vol. 97(10), pages 1486-1494, October.
    5. Abrisqueta, J.M. & Mounzer, O. & Álvarez, S. & Conejero, W. & Garci­a-Orellana, Y. & Tapia, L.M. & Vera, J. & Abrisqueta, I. & Ruiz-Sánchez, M.C., 2008. "Root dynamics of peach trees submitted to partial rootzone drying and continuous deficit irrigation," Agricultural Water Management, Elsevier, vol. 95(8), pages 959-967, August.
    6. Mellisho, C.D. & Egea, I. & Galindo, A. & Rodríguez, P. & Rodríguez, J. & Conejero, W. & Romojaro, F. & Torrecillas, A., 2012. "Pomegranate (Punica granatum L.) fruit response to different deficit irrigation conditions," Agricultural Water Management, Elsevier, vol. 114(C), pages 30-36.
    7. Ghrab, Mohamed & Gargouri, Kamel & Bentaher, Hatem & Chartzoulakis, Kostas & Ayadi, Mohamed & Ben Mimoun, Mehdi & Masmoudi, Mohamed Moncef & Ben Mechlia, Netij & Psarras, Georgios, 2013. "Water relations and yield of olive tree (cv. Chemlali) in response to partial root-zone drying (PRD) irrigation technique and salinity under arid climate," Agricultural Water Management, Elsevier, vol. 123(C), pages 1-11.
    8. Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). II: Water use, fruit and oil yield," Agricultural Water Management, Elsevier, vol. 98(6), pages 950-958, April.
    9. Ahmadi, Seyed Hamid & Andersen, Mathias N. & Plauborg, Finn & Poulsen, Rolf T. & Jensen, Christian R. & Sepaskhah, Ali Reza & Hansen, Søren, 2010. "Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity," Agricultural Water Management, Elsevier, vol. 97(11), pages 1923-1930, November.
    10. Intrigliolo, D.S. & Nicolas, E. & Bonet, L. & Ferrer, P. & Alarcón, J.J. & Bartual, J., 2011. "Water relations of field grown Pomegranate trees (Punica granatum) under different drip irrigation regimes," Agricultural Water Management, Elsevier, vol. 98(4), pages 691-696, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamshidi, Sajad & Zand-Parsa, Shahrokh & Kamgar-Haghighi, Ali Akbar & Shahsavar, Ali Reza & Niyogi, Dev, 2020. "Evapotranspiration, crop coefficients, and physiological responses of citrus trees in semi-arid climatic conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Zahedi, Seyed Morteza & Hosseini, Marjan Sadat & Daneshvar Hakimi Meybodi, Naghmeh & Abadía, Javier & Germ, Mateja & Gholami, Rahmatollah & Abdelrahman, Mostafa, 2022. "Evaluation of drought tolerance in three commercial pomegranate cultivars using photosynthetic pigments, yield parameters and biochemical traits as biomarkers," Agricultural Water Management, Elsevier, vol. 261(C).
    3. Pan, Daili & Song, Yaqian & Dyck, Miles & Gao, Xiaodong & Wu, Pute & Zhao, Xining, 2017. "Effect of plant cover type on soil water budget and tree photosynthesis in jujube orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 135-144.
    4. Volschenk, Theresa, 2021. "Effect of water deficits on pomegranate tree performance and fruit quality – A review," Agricultural Water Management, Elsevier, vol. 246(C).
    5. Helmi, Fatemeh & Helmi, Maryam & Hemmati, Alireza, 2022. "Phosphomolybdic acid/chitosan as acid solid catalyst using for biodiesel production from pomegranate seed oil via microwave heating system: RSM optimization and kinetic study," Renewable Energy, Elsevier, vol. 189(C), pages 881-898.
    6. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    7. Adiba, Atman & Razouk, Rachid & Charafi, Jamal & Haddioui, Abdelmajid & Hamdani, Anas, 2021. "Assessment of water stress tolerance in eleven pomegranate cultivars based on agronomic traits," Agricultural Water Management, Elsevier, vol. 243(C).
    8. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).
    9. Du, Shaoqing & Tong, Ling & Zhang, Xiaotao & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Signal intensity based on maximum daily stem shrinkage can reflect the water status of apple trees under alternate partial root-zone irrigation," Agricultural Water Management, Elsevier, vol. 190(C), pages 21-30.
    10. Wang, Yadong & Liu, Chun & Cui, Pengfei & Su, Derong, 2021. "Effects of partial root-zone drying on alfalfa growth, yield and quality under subsurface drip irrigation," Agricultural Water Management, Elsevier, vol. 245(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2014. "Effect of drip irrigation and fertilizer regimes on fruit yields and water productivity of a pomegranate (Punica granatum (L.) cv. Rabab) orchard," Agricultural Water Management, Elsevier, vol. 146(C), pages 45-56.
    2. Abdolahipour, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2018. "Time and amount of supplemental irrigation at different distances from tree trunks influence on soil water distribution, evaporation and evapotranspiration in rainfed fig orchards," Agricultural Water Management, Elsevier, vol. 203(C), pages 322-332.
    3. Slamini, Maryam & Sbaa, Mohamed & Arabi, Mourad & Darmous, Ahmed, 2022. "Review on Partial Root-zone Drying irrigation: Impact on crop yield, soil and water pollution," Agricultural Water Management, Elsevier, vol. 271(C).
    4. Galindo, A. & Collado-González, J. & Griñán, I. & Corell, M. & Centeno, A. & Martín-Palomo, M.J. & Girón, I.F. & Rodríguez, P. & Cruz, Z.N. & Memmi, H. & Carbonell-Barrachina, A.A. & Hernández, F. & T, 2018. "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems," Agricultural Water Management, Elsevier, vol. 202(C), pages 311-324.
    5. Du, Shaoqing & Kang, Shaozhong & Li, Fusheng & Du, Taisheng, 2017. "Water use efficiency is improved by alternate partial root-zone irrigation of apple in arid northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 184-192.
    6. Volschenk, Theresa, 2020. "Water use and irrigation management of pomegranate trees - A review," Agricultural Water Management, Elsevier, vol. 241(C).
    7. Selahvarzi, Yahya & Zamani, Zabihollah & Fatahi, Reza & Talaei, Ali-Reza, 2017. "Effect of deficit irrigation on flowering and fruit properties of pomegranate (Punica granatum cv. Shahvar)," Agricultural Water Management, Elsevier, vol. 192(C), pages 189-197.
    8. Volschenk, Theresa, 2021. "Effect of water deficits on pomegranate tree performance and fruit quality – A review," Agricultural Water Management, Elsevier, vol. 246(C).
    9. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    10. Koffi Djaman & Suat Irmak & Komlan Koudahe & Samuel Allen, 2021. "Irrigation Management in Potato ( Solanum tuberosum L.) Production: A Review," Sustainability, MDPI, vol. 13(3), pages 1-19, February.
    11. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    12. García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
    13. Shu, Liang-Zuo & Liu, Rui & Min, Wei & Wang, Yao-sheng & Hong-mei, Yu & Zhu, Peng-fei & Zhu, Ji-rong, 2020. "Regulation of soil water threshold on tomato plant growth and fruit quality under alternate partial root-zone drip irrigation," Agricultural Water Management, Elsevier, vol. 238(C).
    14. Waqas, Muhammad Sohail & Cheema, Muhammad Jehanzeb Masud & Hussain, Saddam & Ullah, Muhammad Kaleem & Iqbal, Muhammad Mazhar, 2021. "Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters," Agricultural Water Management, Elsevier, vol. 245(C).
    15. Mouna Aïachi Mezghani & Amel Mguidiche & Faiza Allouche Khebour & Imen Zouari & Faouzi Attia & Giuseppe Provenzano, 2019. "Water Status and Yield Response to Deficit Irrigation and Fertilization of Three Olive Oil Cultivars under the Semi-Arid Conditions of Tunisia," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
    16. Laribi, A.I. & Palou, L. & Intrigliolo, D.S. & Nortes, P.A. & Rojas-Argudo, C. & Taberner, V. & Bartual, J. & Pérez-Gago, M.B., 2013. "Effect of sustained and regulated deficit irrigation on fruit quality of pomegranate cv. ‘Mollar de Elche’ at harvest and during cold storage," Agricultural Water Management, Elsevier, vol. 125(C), pages 61-70.
    17. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    18. Ahmadi, Seyed Hamid & Agharezaee, Mohammad & Kamgar-Haghighi, Ali Akbar & Sepaskhah, Ali Reza, 2014. "Effects of dynamic and static deficit and partial root zone drying irrigation strategies on yield, tuber sizes distribution, and water productivity of two field grown potato cultivars," Agricultural Water Management, Elsevier, vol. 134(C), pages 126-136.
    19. Girón, I.F. & Corell, M. & Galindo, A. & Torrecillas, E. & Morales, D. & Dell’Amico, J. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees," Agricultural Water Management, Elsevier, vol. 148(C), pages 280-286.
    20. Abdulrahman Alhashimi & Arwa Abdulkreem AL-Huqail & Mustafa H. Hashem & Basem M. M. Bakr & Waleed M. E. Fekry & Hosny F. Abdel-Aziz & Ashraf E. Hamdy & Ramadan Eid Abdelraouf & Maher Fathy, 2023. "Using Deficit Irrigation Strategies and Organic Mulches for Improving Yield and Water Productivity of Mango under Dry Environment Conditions," Agriculture, MDPI, vol. 13(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:163:y:2016:i:c:p:146-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.