IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models

Listed author(s):
  • Doltra, J.
  • Muñoz, P.
Registered author(s):

    Two different modeling approaches were used to simulate the N leached during an intensively fertigated crop rotation: a recently developed crop-based simulation model (EU-Rotate_N) and a widely recognized solute transport model (Hydrus-2D). Model performance was evaluated using data from an experiment where four N fertigation levels were applied to a bell pepper-cauliflower-Swiss chard rotation in a sandy loam soil. All the input data were obtained from measurements, transfer functions or were included in the model databases. Model runs were without specific site calibration. The use of soil input parameters based on the same pedotransfer functions in both models resulted in a very similar simulation of soil water content in spite of the different nature of the approaches. Good correlations were found between the simulated water draining below 60cm and that calculated by water balance. Accuracy of the predicted nitrate nitrogen (NO3-N) contents in the 0-90cm soil profile was acceptable with both models, with values of the mean absolute error (MAE) below the average standard deviation of the observations. The uptake of nitrate was better simulated with EU-Rotate_N where specific crop N demand algorithms are involved. In the simulations with Hydrus-2D the evapotranspiration demand was a limiting factor for N uptake, resulting in an increasing underestimation of uptake with decreasing N fertilizer rates. Simulated N leaching below a depth of 60cm was higher with Hydrus-2D due to a higher nitrate concentration in percolated water. Comparison of the observed and predicted yield response to N applications with EU-Rotate_N demonstrated that the best fertigation strategy could be identified and the risk of nitrate leaching quantified with this model. The results showed that for a successful solving of the problem studied, Hydrus-2D probably would need a more complex calibration, and that the EU-Rotate_N model can provide acceptable predictions by adjusting basic parameters for the growing conditions. Further research with other crops and soil types will allow up-scaling the quantification of N leaching from a field level to regional and national levels, identifying best management strategies in relation to N use from an environmental and economic perspective.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Agricultural Water Management.

    Volume (Year): 97 (2010)
    Issue (Month): 2 (February)
    Pages: 277-285

    in new window

    Handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:277-285
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    2. Lakshminarayan, P. G. & Johnson, Stanley R. & Bouzaher, Aziz, 1995. "A Multi-Objective Approach to Integrating Agricultural Economic and Environmental Policies," Staff General Research Papers Archive 955, Iowa State University, Department of Economics.
    3. Ersahin, Sabit & Rustu Karaman, M., 2001. "Estimating potential nitrate leaching in nitrogen fertilized and irrigated tomato using the computer model NLEAP," Agricultural Water Management, Elsevier, vol. 51(1), pages 1-12, October.
    4. Ajdary, Khalil & Singh, D.K. & Singh, A.K. & Khanna, Manoj, 2007. "Modelling of nitrogen leaching from experimental onion field under drip fertigation," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 15-28, April.
    5. Crevoisier, D. & Popova, Z. & Mailhol, J.C. & Ruelle, P., 2008. "Assessment and simulation of water and nitrogen transfer under furrow irrigation," Agricultural Water Management, Elsevier, vol. 95(4), pages 354-366, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:277-285. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.