IDEAS home Printed from
   My bibliography  Save this article

Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models


  • Doltra, J.
  • Muñoz, P.


Two different modeling approaches were used to simulate the N leached during an intensively fertigated crop rotation: a recently developed crop-based simulation model (EU-Rotate_N) and a widely recognized solute transport model (Hydrus-2D). Model performance was evaluated using data from an experiment where four N fertigation levels were applied to a bell pepper-cauliflower-Swiss chard rotation in a sandy loam soil. All the input data were obtained from measurements, transfer functions or were included in the model databases. Model runs were without specific site calibration. The use of soil input parameters based on the same pedotransfer functions in both models resulted in a very similar simulation of soil water content in spite of the different nature of the approaches. Good correlations were found between the simulated water draining below 60cm and that calculated by water balance. Accuracy of the predicted nitrate nitrogen (NO3-N) contents in the 0-90cm soil profile was acceptable with both models, with values of the mean absolute error (MAE) below the average standard deviation of the observations. The uptake of nitrate was better simulated with EU-Rotate_N where specific crop N demand algorithms are involved. In the simulations with Hydrus-2D the evapotranspiration demand was a limiting factor for N uptake, resulting in an increasing underestimation of uptake with decreasing N fertilizer rates. Simulated N leaching below a depth of 60cm was higher with Hydrus-2D due to a higher nitrate concentration in percolated water. Comparison of the observed and predicted yield response to N applications with EU-Rotate_N demonstrated that the best fertigation strategy could be identified and the risk of nitrate leaching quantified with this model. The results showed that for a successful solving of the problem studied, Hydrus-2D probably would need a more complex calibration, and that the EU-Rotate_N model can provide acceptable predictions by adjusting basic parameters for the growing conditions. Further research with other crops and soil types will allow up-scaling the quantification of N leaching from a field level to regional and national levels, identifying best management strategies in relation to N use from an environmental and economic perspective.

Suggested Citation

  • Doltra, J. & Muñoz, P., 2010. "Simulation of nitrogen leaching from a fertigated crop rotation in a Mediterranean climate using the EU-Rotate_N and Hydrus-2D models," Agricultural Water Management, Elsevier, vol. 97(2), pages 277-285, February.
  • Handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:277-285

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Gardenas, A.I. & Hopmans, J.W. & Hanson, B.R. & Simunek, J., 2005. "Two-dimensional modeling of nitrate leaching for various fertigation scenarios under micro-irrigation," Agricultural Water Management, Elsevier, vol. 74(3), pages 219-242, June.
    2. Lakshminarayan, P. G. & Johnson, Stanley R. & Bouzaher, Aziz, 1995. "A Multi-Objective Approach to Integrating Agricultural Economic and Environmental Policies," Staff General Research Papers Archive 955, Iowa State University, Department of Economics.
    3. Ersahin, Sabit & Rustu Karaman, M., 2001. "Estimating potential nitrate leaching in nitrogen fertilized and irrigated tomato using the computer model NLEAP," Agricultural Water Management, Elsevier, vol. 51(1), pages 1-12, October.
    4. Ajdary, Khalil & Singh, D.K. & Singh, A.K. & Khanna, Manoj, 2007. "Modelling of nitrogen leaching from experimental onion field under drip fertigation," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 15-28, April.
    5. Crevoisier, D. & Popova, Z. & Mailhol, J.C. & Ruelle, P., 2008. "Assessment and simulation of water and nitrogen transfer under furrow irrigation," Agricultural Water Management, Elsevier, vol. 95(4), pages 354-366, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Amin, M.G. Mostofa & Šimůnek, Jirka & Lægdsmand, Mette, 2014. "Simulation of the redistribution and fate of contaminants from soil-injected animal slurry," Agricultural Water Management, Elsevier, vol. 131(C), pages 17-29.
    2. repec:eee:agiwat:v:199:y:2018:i:c:p:175-189 is not listed on IDEAS
    3. Karandish, Fatemeh & Šimůnek, Jiří, 2016. "A field-modeling study for assessing temporal variations of soil-water-crop interactions under water-saving irrigation strategies," Agricultural Water Management, Elsevier, vol. 178(C), pages 291-303.
    4. Soto, F. & Gallardo, M. & Giménez, C. & Peña-Fleitas, T. & Thompson, R.B., 2014. "Simulation of tomato growth, water and N dynamics using the EU-Rotate_N model in Mediterranean greenhouses with drip irrigation and fertigation," Agricultural Water Management, Elsevier, vol. 132(C), pages 46-59.
    5. Wang, Jun & Huang, Guanhua & Zhan, Hongbin & Mohanty, Binayak P. & Zheng, Jianhua & Huang, Quanzhong & Xu, Xu, 2014. "Evaluation of soil water dynamics and crop yield under furrow irrigation with a two-dimensional flow and crop growth coupled model," Agricultural Water Management, Elsevier, vol. 141(C), pages 10-22.
    6. repec:eee:agiwat:v:193:y:2017:i:c:p:174-190 is not listed on IDEAS
    7. Wang, Zhen & Li, Jiusheng & Li, Yanfeng, 2014. "Simulation of nitrate leaching under varying drip system uniformities and precipitation patterns during the growing season of maize in the North China Plain," Agricultural Water Management, Elsevier, vol. 142(C), pages 19-28.
    8. Suárez-Rey, E.M. & Romero-Gámez, M. & Giménez, C. & Thompson, R.B. & Gallardo, M., 2016. "Use of EU-Rotate_N and CropSyst models to predict yield, growth and water and N dynamics of fertigated leafy vegetables in a Mediterranean climate and to determine N fertilizer requirements," Agricultural Systems, Elsevier, vol. 149(C), pages 150-164.
    9. Wallis, K.J. & Candela, L. & Mateos, R.M. & Tamoh, K., 2011. "Simulation of nitrate leaching under potato crops in a Mediterranean area. Influence of frost prevention irrigation on nitrogen transport," Agricultural Water Management, Elsevier, vol. 98(10), pages 1629-1640, August.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:97:y:2010:i:2:p:277-285. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.