IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v223y2019ic64.html
   My bibliography  Save this article

Irrigation scheduling to maximize crop gross margin under limited water availability

Author

Listed:
  • López-Mata, E.
  • Tarjuelo, J.M.
  • Orengo-Valverde, J.J.
  • Pardo, J.J.
  • Domínguez, A.

Abstract

MOPECO uses the optimized regulated deficit irrigation (ORDI) methodology to determine the irrigation schedule that maximizes the gross margin (GM) of annual crops when the availability of irrigation water is limited. To this end, it is necessary to determine the functions that relate GM to the gross irrigation water (IG) supplied to the crop. Given that MOPECO is designed for implementation by farmers using online tools, the time required to obtain the “GM vs. IG” function must be low. Thus, the objective was to develop and validate a methodology to generate the most accurate “GM vs. IG” function with a low calculation time that takes into consideration the effect of irrigation uniformity on final yield. Five sub-models were developed and evaluated with barley, onion and maize for the semi-arid conditions of Castilla-La Mancha (Spain). The sub-models included one or more of the following variables: yield (Y); effective precipitation (Pef); soil moisture (S); and its distribution uniformity at plot level (CU). The sub-model “Y-Pef-S-CU” achieved the best fitting. The other sub-models (Y, Y-Pef, Y-Pef-S, and Y-Pef-CU) provided solutions that were very close to the optimum, with low calculation time. Nevertheless, the best fit of each sub-model to the optimum function was achieved in different sections of this function. Therefore, the five sub-models are complementary, and it is advisable to use them simultaneously thanks to their low calculation time requirements (3.9 s). The validation with the three crops showed that in farms where irrigation uniformity and water price are low and harvest price is high, it is economically advisable to apply higher irrigation depths than the crop irrigation requirements. Nevertheless, as improving agricultural water productivity is key for sustaining the environment, tools like MOPECO may help to maximize GM and increase water use efficiency by means of deficit irrigation strategies.

Suggested Citation

  • López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
  • Handle: RePEc:eee:agiwat:v:223:y:2019:i:c:64
    DOI: 10.1016/j.agwat.2019.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377419304019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2019.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Domínguez, A. & Tarjuelo, J.M. & de Juan, J.A. & López-Mata, E. & Breidy, J. & Karam, F., 2011. "Deficit irrigation under water stress and salinity conditions: The MOPECO-Salt Model," Agricultural Water Management, Elsevier, vol. 98(9), pages 1451-1461, July.
    2. Leite, K.N. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2015. "Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts," Agricultural Water Management, Elsevier, vol. 148(C), pages 164-176.
    3. Sebastian Kloss & Raji Pushpalatha & Kefasi Kamoyo & Niels Schütze, 2012. "Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 997-1014, March.
    4. Domínguez, A. & Martínez, R.S. & de Juan, J.A. & Martínez-Romero, A. & Tarjuelo, J.M., 2012. "Simulation of maize crop behavior under deficit irrigation using MOPECO model in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 107(C), pages 42-53.
    5. Nascimento, A.K & Schwartz, R.C. & Lima, F.A & López-Mata, E. & Domínguez, A. & Izquiel, A. & Tarjuelo, J.M & Martínez-Romero, A, 2019. "Effects of irrigation uniformity on yield response and production economics of maize in a semiarid zone," Agricultural Water Management, Elsevier, vol. 211(C), pages 178-189.
    6. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.
    7. Fazlullah Akhtar & Bernhard Tischbein & Usman Awan, 2013. "Optimizing Deficit Irrigation Scheduling Under Shallow Groundwater Conditions in Lower Reaches of Amu Darya River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3165-3178, June.
    8. Stockle, Claudio O. & Martin, Steve A. & Campbell, Gaylon S., 1994. "CropSyst, a cropping systems simulation model: Water/nitrogen budgets and crop yield," Agricultural Systems, Elsevier, vol. 46(3), pages 335-359.
    9. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    10. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    11. Domínguez, A. & Martínez-Navarro, A. & López-Mata, E. & Tarjuelo, J.M. & Martínez-Romero, A., 2017. "Real farm management depending on the available volume of irrigation water (part I): Financial analysis," Agricultural Water Management, Elsevier, vol. 192(C), pages 71-84.
    12. López-Mata, E. & Tarjuelo, J.M. & de Juan, J.A. & Ballesteros, R. & Domínguez, A., 2010. "Effect of irrigation uniformity on the profitability of crops," Agricultural Water Management, Elsevier, vol. 98(1), pages 190-198, December.
    13. López-Mata, E. & Orengo-Valverde, J.J. & Tarjuelo, J.M. & Martínez-Romero, A. & Domínguez, A., 2016. "Development of a direct-solution algorithm for determining the optimal crop planning of farms using deficit irrigation," Agricultural Water Management, Elsevier, vol. 171(C), pages 173-187.
    14. Linker, Raphael & Ioslovich, Ilya & Sylaios, Georgios & Plauborg, Finn & Battilani, Adriano, 2016. "Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato," Agricultural Water Management, Elsevier, vol. 163(C), pages 236-243.
    15. Domínguez, A. & Martínez-Romero, A. & Leite, K.N. & Tarjuelo, J.M. & de Juan, J.A. & López-Urrea, R., 2013. "Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain," Agricultural Water Management, Elsevier, vol. 130(C), pages 154-167.
    16. R. González Perea & E. Camacho Poyato & P. Montesinos & J. A. Rodríguez Díaz, 2016. "Optimization of Irrigation Scheduling Using Soil Water Balance and Genetic Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(8), pages 2815-2830, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pardo, J.J. & Sánchez-Virosta, A. & Léllis, B.C. & Domínguez, A. & Martínez-Romero, A., 2022. "Physiological basis to assess barley response to optimized regulated deficit irrigation for limited volumes of water (ORDIL)," Agricultural Water Management, Elsevier, vol. 274(C).
    2. Myriam Ruberto & Alessandro Catini & Mara Lai & Veronica Manganiello, 2021. "The impact of irrigation on agricultural productivity: The case of FADN farms in Veneto," Economia agro-alimentare, FrancoAngeli Editore, vol. 23(3), pages 1-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martínez-Romero, A. & López-Urrea, R. & Montoya, F. & Pardo, J.J. & Domínguez, A., 2021. "Optimization of irrigation scheduling for barley crop, combining AquaCrop and MOPECO models to simulate various water-deficit regimes," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Martínez-Romero, A. & Domínguez, A. & Landeras, G., 2019. "Regulated deficit irrigation strategies for different potato cultivars under continental Mediterranean-Atlantic conditions," Agricultural Water Management, Elsevier, vol. 216(C), pages 164-176.
    3. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    4. López-Mata, E. & Orengo-Valverde, J.J. & Tarjuelo, J.M. & Martínez-Romero, A. & Domínguez, A., 2016. "Development of a direct-solution algorithm for determining the optimal crop planning of farms using deficit irrigation," Agricultural Water Management, Elsevier, vol. 171(C), pages 173-187.
    5. Pardo, J.J. & Martínez-Romero, A. & Léllis, B.C. & Tarjuelo, J.M. & Domínguez, A., 2020. "Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions," Agricultural Water Management, Elsevier, vol. 228(C).
    6. Pardo, J.J. & Domínguez, A. & Léllis, B.C. & Montoya, F. & Tarjuelo, J.M. & Martínez-Romero, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on quality, profitability and sustainability of barley in water scarce areas," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Martínez-Romero, A. & Martínez-Navarro, A. & Pardo, J.J. & Montoya, F. & Domínguez, A., 2017. "Real farm management depending on the available volume of irrigation water (part II): Analysis of crop parameters and harvest quality," Agricultural Water Management, Elsevier, vol. 192(C), pages 58-70.
    8. Domínguez, Alfonso & Schwartz, Robert C. & Pardo, José J. & Guerrero, Bridget & Bell, Jourdan M. & Colaizzi, Paul D. & Louis Baumhardt, R., 2022. "Center pivot irrigation capacity effects on maize yield and profitability in the Texas High Plains," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Lima, F.A. & Córcoles, J.I. & Tarjuelo, J.M. & Martínez-Romero, A., 2019. "Model for management of an on-demand irrigation network based on irrigation scheduling of crops to minimize energy use (Part II): Financial impact of regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 215(C), pages 44-54.
    10. Léllis, B.C. & Martínez-Romero, A. & Schwartz, R.C. & Pardo, J.J. & Tarjuelo, J.M. & Domínguez, A., 2022. "Effect of the optimized regulated deficit irrigation methodology on water use in garlic," Agricultural Water Management, Elsevier, vol. 260(C).
    11. Sánchez-Virosta, A & Léllis, B.C & Pardo, J.J & Martínez-Romero, A & Sánchez-Gómez, D & Domínguez, A, 2020. "Functional response of garlic to optimized regulated deficit irrigation (ORDI) across crop stages and years: Is physiological performance impaired at the most sensitive stages to water deficit?," Agricultural Water Management, Elsevier, vol. 228(C).
    12. Domínguez, A. & Martínez-Navarro, A. & López-Mata, E. & Tarjuelo, J.M. & Martínez-Romero, A., 2017. "Real farm management depending on the available volume of irrigation water (part I): Financial analysis," Agricultural Water Management, Elsevier, vol. 192(C), pages 71-84.
    13. Nascimento, A.K & Schwartz, R.C. & Lima, F.A & López-Mata, E. & Domínguez, A. & Izquiel, A. & Tarjuelo, J.M & Martínez-Romero, A, 2019. "Effects of irrigation uniformity on yield response and production economics of maize in a semiarid zone," Agricultural Water Management, Elsevier, vol. 211(C), pages 178-189.
    14. Karam, F. & Amacha, N. & Fahed, S. & EL Asmar, T. & Domínguez, A., 2014. "Response of potato to full and deficit irrigation under semiarid climate: Agronomic and economic implications," Agricultural Water Management, Elsevier, vol. 142(C), pages 144-151.
    15. Domínguez, A. & Martínez-Romero, A. & Leite, K.N. & Tarjuelo, J.M. & de Juan, J.A. & López-Urrea, R., 2013. "Combination of typical meteorological year with regulated deficit irrigation to improve the profitability of garlic growing in central spain," Agricultural Water Management, Elsevier, vol. 130(C), pages 154-167.
    16. Pardo, J.J. & Sánchez-Virosta, A. & Léllis, B.C. & Domínguez, A. & Martínez-Romero, A., 2022. "Physiological basis to assess barley response to optimized regulated deficit irrigation for limited volumes of water (ORDIL)," Agricultural Water Management, Elsevier, vol. 274(C).
    17. Leite, K.N. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2015. "Distribution of limited irrigation water based on optimized regulated deficit irrigation and typical metheorological year concepts," Agricultural Water Management, Elsevier, vol. 148(C), pages 164-176.
    18. Li, Xuemin & Zhang, Jingwen & Cai, Ximing & Huo, Zailin & Zhang, Chenglong, 2023. "Simulation-optimization based real-time irrigation scheduling: A human-machine interactive method enhanced by data assimilation," Agricultural Water Management, Elsevier, vol. 276(C).
    19. Léllis, B.C. & Carvalho, D.F. & Martínez-Romero, A. & Tarjuelo, J.M. & Domínguez, A., 2017. "Effective management of irrigation water for carrot under constant and optimized regulated deficit irrigation in Brazil," Agricultural Water Management, Elsevier, vol. 192(C), pages 294-305.
    20. Domínguez, A. & de Juan, J.A. & Tarjuelo, J.M. & Martínez, R.S. & Martínez-Romero, A., 2012. "Determination of optimal regulated deficit irrigation strategies for maize in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 67-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:223:y:2019:i:c:64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.