IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v13y2023i10p1942-d1253822.html
   My bibliography  Save this article

Improving Environmental Water Supply in Wetlands through Optimal Cropping Patterns

Author

Listed:
  • Mahdi Sedighkia

    (ICEDS & MSI, Australian National University, Canberra 2601, Australia)

  • Bithin Datta

    (College of Science and Engineering, James Cook University, Townsville 4814, Australia)

Abstract

This study improves the environmental water supply in a wetland using a novel framework in which the environmental impacts due to irrigation supply and the economic losses for agriculture are minimized through the proposal of an optimal cropping pattern that changes the total cropping area and cultivated area of each crop. The ecological degradation functions for rivers and wetlands were developed using a fuzzy approach and data-driven model. The net farming revenue was considered as the economic index to maximize benefits. The root mean square error (RMSE) and the Nash–Sutcliffe model efficiency coefficient (NSE) were applied to evaluate ecological models. According to the results, the optimal cropping pattern simultaneously minimizes environmental impacts due to irrigation supply and maximizes farmers’ benefits. The optimal cropping pattern provides more than 50% of the ideal net revenue on the catchment scale, which means that ecological degradations due to reductions in inflow in rivers and wetlands, as well as farmers’ revenue losses, are minimized simultaneously. Furthermore, the results indicate that cropping patterns should be dynamic, which means that changing the cropping pattern annually based on the available water is essential to mitigating ecological impacts. This study demonstrates that the linking of cropping pattern optimization and environmental flow simulation in freshwater bodies should be considered in land-use policies due to the impact of cropping patterns on environmental degradation in wetland catchments.

Suggested Citation

  • Mahdi Sedighkia & Bithin Datta, 2023. "Improving Environmental Water Supply in Wetlands through Optimal Cropping Patterns," Agriculture, MDPI, vol. 13(10), pages 1-17, October.
  • Handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1942-:d:1253822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/13/10/1942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/13/10/1942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Tian & Gill, Roderic, 2005. "Developing effective policies for the sustainable development of ecological agriculture in China: the case study of Jinshan County with a systems dynamics model," Ecological Economics, Elsevier, vol. 53(2), pages 223-246, April.
    2. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    3. Mahdi Sedighkia & Bithin Datta, 2022. "A simulation-optimization system for evaluating flood management and environmental flow supply by reservoirs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2855-2879, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madan K. Jha & Richard C. Peralta & Sasmita Sahoo, 2020. "Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India," IJERPH, MDPI, vol. 17(10), pages 1-20, May.
    2. Rui Jun Qin & Ho Hon Leung, 2021. "Becoming a Traditional Village: Heritage Protection and Livelihood Transformation of a Chinese Village," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    3. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    4. Sahan T. M. Dissanayake, 2016. "Using STELLA simulation models to teach natural resource economics," The Journal of Economic Education, Taylor & Francis Journals, vol. 47(1), pages 40-48, January.
    5. Li, Fu Jia & Dong, Suo Cheng & Li, Fei, 2012. "A system dynamics model for analyzing the eco-agriculture system with policy recommendations," Ecological Modelling, Elsevier, vol. 227(C), pages 34-45.
    6. Siti Hanani Isa & Mohd Noor Afiq Ramlee & Muhamad Safiih Lola & Mhd Ikhwanuddin & Mohamad N Azra & Mohd Tajuddin Abdullah & Syerrina Zakaria & Yahaya Ibrahim, 2021. "A system dynamics model for analysing the eco-aquaculture system of integrated aquaculture park in Malaysia with policy recommendations," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 511-533, January.
    7. Shi, Tian, 2009. "Developing an auditing tool to measure community capacity of using market based instruments," 2009 Conference (53rd), February 11-13, 2009, Cairns, Australia 47649, Australian Agricultural and Resource Economics Society.
    8. López-Mata, E. & Tarjuelo, J.M. & Orengo-Valverde, J.J. & Pardo, J.J. & Domínguez, A., 2019. "Irrigation scheduling to maximize crop gross margin under limited water availability," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    9. Minjie Li & Jian Wang & Yihui Chen, 2019. "Evaluation and Influencing Factors of Sustainable Development Capability of Agriculture in Countries along the Belt and Road Route," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    10. Sanjay Taneja & Mukul Bhatnagar & Pawan Kumar & Ramona Rupeika-Apoga, 2023. "India’s Total Natural Resource Rents (NRR) and GDP: An Augmented Autoregressive Distributed Lag (ARDL) Bound Test," JRFM, MDPI, vol. 16(2), pages 1-14, February.
    11. Dipsikha Dasgupta & Anupam Debsarkar & Tumpa Hazra & B. K. Bala & Amitava Gangopadhyay & Debasish Chatterjee, 2017. "Scenario of future e-waste generation and recycle-reuse-landfill-based disposal pattern in India: a system dynamics approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1473-1487, August.
    12. Hernandez, Juan M. & Leon, Carmelo J., 2007. "The interactions between natural and physical capitals in the tourist lifecycle model," Ecological Economics, Elsevier, vol. 62(1), pages 184-193, April.
    13. Mwangi Joseph Kanyua, 2020. "Effect of Imposed Self-Governance on Irrigation Rules Design among Horticultural Producers in Peri-Urban Kenya," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    14. Lauriane MOUYSSET & Luc DOYEN & Jean-Christophe PEREAU & Fréderic JIGUET, 2013. "A double benefit of biodiversity in agriculture," Cahiers du GREThA (2007-2019) 2013-04, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    15. Niu, G. & Li, Y.P. & Huang, G.H. & Liu, J. & Fan, Y.R., 2016. "Crop planning and water resource allocation for sustainable development of an irrigation region in China under multiple uncertainties," Agricultural Water Management, Elsevier, vol. 166(C), pages 53-69.
    16. Akopov, Andranik S. & Beklaryan, Levon A. & Saghatelyan, Armen K., 2017. "Agent-based modelling for ecological economics: A case study of the Republic of Armenia," Ecological Modelling, Elsevier, vol. 346(C), pages 99-118.
    17. Jiang, Yao & Xu, Xu & Huang, Quanzhong & Huo, Zailin & Huang, Guanhua, 2016. "Optimizing regional irrigation water use by integrating a two-level optimization model and an agro-hydrological model," Agricultural Water Management, Elsevier, vol. 178(C), pages 76-88.
    18. Baur, Ivo & Binder, Claudia R., 2015. "Modeling and assessing scenarios of common property pastures management in Switzerland," Ecological Economics, Elsevier, vol. 119(C), pages 292-305.
    19. Daneshnia, F. & Amini, A. & Chaichi, M.R., 2015. "Surfactant effect on forage yield and water use efficiency for berseem clover and basil in intercropping and limited irrigation treatments," Agricultural Water Management, Elsevier, vol. 160(C), pages 57-63.
    20. Li, Mo & Guo, Ping, 2015. "A coupled random fuzzy two-stage programming model for crop area optimization—A case study of the middle Heihe River basin, China," Agricultural Water Management, Elsevier, vol. 155(C), pages 53-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:10:p:1942-:d:1253822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.