IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i1d10.1007_s11269-016-1508-2.html
   My bibliography  Save this article

Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models?

Author

Listed:
  • H. Delottier

    (Bordeaux INP and Univ. Bordeaux Montaigne, ENSEGID)

  • A. Pryet

    (Bordeaux INP and Univ. Bordeaux Montaigne, ENSEGID)

  • A. Dupuy

    (Bordeaux INP and Univ. Bordeaux Montaigne, ENSEGID)

Abstract

Numerical models are now commonly used to define guidelines for the sustainable management of groundwater resources. Despite significant advances in inverse modeling and uncertainty analysis, most of groundwater management models are still calibrated by manual trial and error and disregard predictive uncertainty. There is a gap between recent advances in inverse modeling and current practices in operational groundwater modeling. The disinterest of water practitioners for this issue can be explained by unawareness, lack of relevant and reliable datasets, difficulties of implementation and prohibitive computation times. The purpose of this study is to convince water practitioners and water managers that uncertainty analysis is not just a smart, optional add-on to a groundwater model, but rather a critical and necessary step. So as to broaden the audience of this paper out of the community of specialists, we use a simple didactic illustration and propose realistic, practical solutions. Based on a synthetic model, we highlight that if we follow common practices (parameter calibration solely against observed groundwater heads), our knowledge of the unknown parameters is not sufficient to constrain the predicted value of interest (the sustainable yield). This is a critical issue since management models are likely to be used for the design of legal frameworks. After this illustration, we argue that calibration algorithms should become a routine process to bring the uncertainty analysis to the forefront. We promote the use of a linear uncertainty analysis as a diagnostic tool for large real world groundwater management models. When uncertainty is high, stakeholders should encourage the collection of multiple data sets to expand the calibration data set and gather prior information on parameter values.

Suggested Citation

  • H. Delottier & A. Pryet & A. Dupuy, 2017. "Why Should Practitioners be Concerned about Predictive Uncertainty of Groundwater Management Models?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 61-73, January.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:1:d:10.1007_s11269-016-1508-2
    DOI: 10.1007/s11269-016-1508-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-016-1508-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-016-1508-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon Reese & Joakim Westerlund, 2016. "Panicca: Panic on Cross‐Section Averages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 961-981, September.
    2. Qi Zhang & Adrian Werner, 2009. "Integrated Surface–Subsurface Modeling of Fuxianhu Lake Catchment, Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2205-2205, September.
    3. Miguel Pérez-Martín & Teodoro Estrela & Joaquín Andreu & Javier Ferrer, 2014. "Modeling Water Resources and River-Aquifer Interaction in the Júcar River Basin, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4337-4358, September.
    4. Qi Zhang & Adrian Werner, 2009. "Integrated Surface–Subsurface Modeling of Fuxianhu Lake Catchment, Southwest China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(11), pages 2189-2204, September.
    5. Aliasghar Montazar & H. Riazi & S. Behbahani, 2010. "Conjunctive Water Use Planning in an Irrigation Command Area," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(3), pages 577-596, February.
    6. Nikitas Mylopoulos & Y. Mylopoulos & D. Tolikas & N. Veranis, 2007. "Groundwater modeling and management in a complex lake-aquifer system," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(2), pages 469-494, February.
    7. Fakhri Manghi & Dennis Williams & Jack Safely & Moshrik Hamdi, 2012. "Groundwater Flow Modeling of the Arlington Basin to Evaluate Management Strategies for Expansion of the Arlington Desalter Water Production," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 21-41, January.
    8. Akram Sedki & Driss Ouazar, 2011. "Simulation-Optimization Modeling for Sustainable Groundwater Development: A Moroccan Coastal Aquifer Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(11), pages 2855-2875, September.
    9. repec:cup:judgdm:v:11:y:2016:i:6:p:572-581 is not listed on IDEAS
    10. Hamid Safavi & Fatemeh Darzi & Miguel Mariño, 2010. "Simulation-Optimization Modeling of Conjunctive Use of Surface Water and Groundwater," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(10), pages 1965-1988, August.
    11. Polansky, Jonathan R & Titus, Kori & Atayeva, Renata & Glantz, Stanton A PhD, 2016. "Smoking in top-grossing US movies 2015," University of California at San Francisco, Center for Tobacco Control Research and Education qt0qw7b0rh, Center for Tobacco Control Research and Education, UC San Francisco.
    12. R. Rejani & Madan Jha & S. Panda & R. Mull, 2008. "Simulation Modeling for Efficient Groundwater Management in Balasore Coastal Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 23-50, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mona Nemati & Mahmoud Mohammad Rezapour Tabari & Seyed Abbas Hosseini & Saman Javadi, 2021. "A Novel Approach Using Hybrid Fuzzy Vertex Method-MATLAB Framework Based on GMS Model for Quantifying Predictive Uncertainty Associated with Groundwater Flow and Transport Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4189-4215, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjay Raul & Sudhindra Panda, 2013. "Simulation-Optimization Modeling for Conjunctive Use Management under Hydrological Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1323-1350, March.
    2. Ajay Singh, 2014. "Irrigation Planning and Management Through Optimization Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 1-14, January.
    3. A. Bobba, 2012. "Ground Water-Surface Water Interface (GWSWI) Modeling: Recent Advances and Future Challenges," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(14), pages 4105-4131, November.
    4. Guangju Zhao & Georg Hörmann & Nicola Fohrer & Junfeng Gao & Hengpeng Li & Peng Tian, 2011. "Application of a Simple Raster-Based Hydrological Model for Streamflow Prediction in a Humid Catchment with Polder Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 661-676, January.
    5. Iraj Saeedpanah & Ramin Golmohamadi Azar, 2017. "New Analytical Expressions for Two-Dimensional Aquifer Adjoining with Streams of Varying Water Level," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 403-424, January.
    6. M. Mohammad Rezapour Tabari, 2015. "Conjunctive Use Management under Uncertainty Conditions in Aquifer Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2967-2986, June.
    7. Mehrabi, Ahmad & Heidarpour, Manouchehr & Safavi, Hamid R. & Rezaei, Farshad, 2021. "Assessment of the optimized scenarios for economic-environmental conjunctive water use utilizing gravitational search algorithm," Agricultural Water Management, Elsevier, vol. 246(C).
    8. Shin-Jen Cheng, 2010. "Generation of Runoff Components from Exponential Expressions of Serial Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3561-3590, October.
    9. Jose-Luis Molina & Raziyeh Farmani & John Bromley, 2011. "Aquifers Management through Evolutionary Bayesian Networks: The Altiplano Case Study (SE Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3883-3909, November.
    10. A. Pryet & B. Labarthe & F. Saleh & M. Akopian & N. Flipo, 2015. "Reporting of Stream-Aquifer Flow Distribution at the Regional Scale with a Distributed Process-Based Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 139-159, January.
    11. Raquel Salazar & Ferenc Szidarovszky & Abraham Rojano, 2010. "Water Distribution Scenarios in the Mexican Valley," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2959-2970, September.
    12. David Payne & Amvrossios Bagtzoglou & Glenn Warner & Lanbo Liu, 2014. "Alternatives to Reduce Pumping Effects in Glacial Stratified Drift Aquifers During Periods of Low Stream Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(7), pages 1973-1989, May.
    13. Issam Nouiri & Muluneh Yitayew & Jobst Maßmann & Jamila Tarhouni, 2015. "Multi-objective Optimization Tool for Integrated Groundwater Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5353-5375, November.
    14. Garg, N.K. & Dadhich, Sushmita M., 2014. "Integrated non-linear model for optimal cropping pattern and irrigation scheduling under deficit irrigation," Agricultural Water Management, Elsevier, vol. 140(C), pages 1-13.
    15. T. Fowe & I. Nouiri & B. Ibrahim & H. Karambiri & J. Paturel, 2015. "OPTIWAM: An Intelligent Tool for Optimizing Irrigation Water Management in Coupled Reservoir–Groundwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3841-3861, August.
    16. Fateme Heydari & Bahram Saghafian & Majid Delavar, 2016. "Coupled Quantity-Quality Simulation-Optimization Model for Conjunctive Surface-Groundwater Use," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4381-4397, September.
    17. Aditi Bhadra & Arnab Bandyopadhyay & Rajendra Singh & Narendra Raghuwanshi, 2010. "An Alternative Rotational Delivery Schedule for Improved Performance of Reservoir-based Canal Irrigation System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3679-3700, October.
    18. I. Tsanis & M. Apostolaki, 2009. "Estimating Groundwater Withdrawal in Poorly Gauged Agricultural Basins," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1097-1123, April.
    19. Abdulaziz Alqahtani & Tom Sale & Michael J. Ronayne & Courtney Hemenway, 2021. "Demonstration of Sustainable Development of Groundwater through Aquifer Storage and Recovery (ASR)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(2), pages 429-445, January.
    20. Quynh Chau Pham Holland & Benjamin Liu & Eduardo Roca, 2019. "International funding cost and heterogeneous mortgage interest-rate pass-through: a bank-level analysis," Empirical Economics, Springer, vol. 57(4), pages 1255-1289, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:1:d:10.1007_s11269-016-1508-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.