IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v308y2022ics0306261921016081.html
   My bibliography  Save this article

Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective

Author

Listed:
  • He, Liuyue
  • Xu, Zhenci
  • Wang, Sufen
  • Bao, Jianxia
  • Fan, Yunfei
  • Daccache, Andre

Abstract

Global warming, water scarcity and limited land resources are the most challenging problems facing agriculture to ensure food security for the expected 9 billion people in 2050. To solve these problems, the classical optimal planting pattern, based on crop suitability evaluation method, is often adopted to reallocate water and land resources. However, whether or not the classical optimal planting pattern, which only considers environmental conditions in crop suitability evaluation, is beneficial to the regional carbon neutrality goal and saves water and energy resources has rarely been explored. Here, China’s major arid food production area, the middle reaches of Heihe River Basin, is chosen as the demonstration to explore this issue. The classical optimal planting pattern obtained by crop suitability evaluation is compared with current planting in terms of planting distribution, carbon sequestration, energy consumption and water productivity from 2002 to 2016. Interestingly, the results indicate that optimal planting would reduce the regional net carbon sequestration capacity by up to 13.09% and increase regional carbon emissions by up to 22%, which is harmful to reach the commitment of carbon neutrality goal in China. Contrary, optimal crop planting pattern can increase regional water productivity by 1.74–32.59% and economic benefits by 1.52–30.55% while having little impact on energy consumption and water consumption. Considering the contradictions effects of classical optimal planting pattern on the food-energy-water-carbon nexus, we strongly recommend redefining the “optimal” in crop planting management by taking impacts on carbon into consideration to alleviate the crisis of global warming.

Suggested Citation

  • He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
  • Handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921016081
    DOI: 10.1016/j.apenergy.2021.118364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016081
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Haoyang & Wang, Sufen & Hao, Xinmei, 2017. "An Improved Analytic Hierarchy Process Method for the evaluation of agricultural water management in irrigation districts of north China," Agricultural Water Management, Elsevier, vol. 179(C), pages 324-337.
    2. Cheng Han & Shengbo Chen & Yan Yu & Zhengyuan Xu & Bingxue Zhu & Xitong Xu & Zibo Wang, 2021. "Evaluation of Agricultural Land Suitability Based on RS, AHP, and MEA: A Case Study in Jilin Province, China," Agriculture, MDPI, vol. 11(4), pages 1-23, April.
    3. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    4. Zhenci Xu & Sophia N. Chau & Xiuzhi Chen & Jian Zhang & Yingjie Li & Thomas Dietz & Jinyan Wang & Julie A. Winkler & Fan Fan & Baorong Huang & Shuxin Li & Shaohua Wu & Anna Herzberger & Ying Tang & De, 2020. "Assessing progress towards sustainable development over space and time," Nature, Nature, vol. 577(7788), pages 74-78, January.
    5. Ryna Yiyun Cui & Nathan Hultman & Diyang Cui & Haewon McJeon & Sha Yu & Morgan R. Edwards & Arijit Sen & Kaihui Song & Christina Bowman & Leon Clarke & Junjie Kang & Jiehong Lou & Fuqiang Yang & Jiaha, 2021. "A plant-by-plant strategy for high-ambition coal power phaseout in China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Zhao, Jiongchao & Wang, Chong & Shi, Xiaoyu & Bo, Xiaozhi & Li, Shuo & Shang, Mengfei & Chen, Fu & Chu, Qingquan, 2021. "Modeling climatically suitable areas for soybean and their shifts across China," Agricultural Systems, Elsevier, vol. 192(C).
    7. Xiaoxia Zou & Yu’e Li & Kuo Li & Roger Cremades & Qingzhu Gao & Yunfan Wan & Xiaobo Qin, 2015. "Greenhouse gas emissions from agricultural irrigation in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 295-315, February.
    8. Azadeh, A. & Tarverdian, S., 2007. "Integration of genetic algorithm, computer simulation and design of experiments for forecasting electrical energy consumption," Energy Policy, Elsevier, vol. 35(10), pages 5229-5241, October.
    9. Xuhui Wang & Christoph Müller & Joshua Elliot & Nathaniel D. Mueller & Philippe Ciais & Jonas Jägermeyr & James Gerber & Patrice Dumas & Chenzhi Wang & Hui Yang & Laurent Li & Delphine Deryng & Christ, 2021. "Global irrigation contribution to wheat and maize yield," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    10. Hong Xue & Shoujian Zhang & Yikun Su & Zezhou Wu, 2018. "Capital Cost Optimization for Prefabrication: A Factor Analysis Evaluation Model," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    11. Yuan, Mei-Hua & Lo, Shang-Lien, 2020. "Developing indicators for the monitoring of the sustainability of food, energy, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Liuyue He & Sufen Wang & Congcong Peng & Qian Tan, 2018. "Optimization of Water Consumption Distribution Based on Crop Suitability in the Middle Reaches of Heihe River," Sustainability, MDPI, vol. 10(7), pages 1-17, June.
    13. Li, Jiang & Mao, Xiaomin & Li, Mo, 2017. "Modeling hydrological processes in oasis of Heihe River Basin by landscape unit-based conceptual models integrated with FEFLOW and GIS," Agricultural Water Management, Elsevier, vol. 179(C), pages 338-351.
    14. Shouqiang Yin & Jing Li & Jiaxin Liang & Kejing Jia & Zhen Yang & Yuan Wang, 2020. "Optimization of the Weighted Linear Combination Method for Agricultural Land Suitability Evaluation Considering Current Land Use and Regional Differences," Sustainability, MDPI, vol. 12(23), pages 1-25, December.
    15. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    16. Ge Song & Hongmei Zhang, 2021. "Cultivated Land Use Layout Adjustment Based on Crop Planting Suitability: A Case Study of Typical Counties in Northeast China," Land, MDPI, vol. 10(2), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Yingjie & Zhu, Aikong & Wang, Jingya & Xia, Ke & Liu, Zhenglan, 2023. "Study on the low-carbon development under a resources-dependent framework of water-land -energy utilization: Evidence from the Yellow River Basin, China," Energy, Elsevier, vol. 280(C).
    2. Rupu Yang & Min Wang & Mengxue Zhao & Xiangzhao Feng, 2022. "Synergic Benefits of Air Pollutant Reduction, CO 2 Emission Abatement, and Water Saving under the Goal of Achieving Carbon Emission Peak: The Case of Tangshan City, China," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    3. Lei Tong & Mengdie Luo, 2024. "Spatiotemporal Evolution Characteristics and Driving Factors of Water-Energy-Food-Carbon System Vulnerability: A Case Study of the Yellow River Basin, China," Sustainability, MDPI, vol. 16(3), pages 1-32, January.
    4. Lee, Chien-Chiang & Hussain, Jafar, 2022. "Carbon neutral sustainability and green development during energy consumption," Innovation and Green Development, Elsevier, vol. 1(1).
    5. Li, Junjie & Zhang, Yueling & Yang, Yanli & Zhang, Xiaomei & Wang, Nana & Zheng, Yonghong & Tian, Yajun & Xie, Kechang, 2022. "Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors: A comparative study," Applied Energy, Elsevier, vol. 312(C).
    6. Hussain, Jafar & Lee, Chien-Chiang & Hu, Danting, 2023. "Maximizing load capacity factor through a carbon-neutral environment via a simulation of carbon peak," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 746-764.
    7. Fan, Yunfei & He, Liuyue & Liu, Yi & Wang, Sufen, 2022. "Optimal cropping patterns can be conducive to sustainable irrigation: Evidence from the drylands of Northwest China," Agricultural Water Management, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huili Chen & Zhongyao Liang & Yong Liu & Qingsong Jiang & Shuguang Xie, 2018. "Effects of drought and flood on crop production in China across 1949–2015: spatial heterogeneity analysis with Bayesian hierarchical modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 525-541, May.
    2. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Zhao, Jiongchao & Han, Tong & Wang, Chong & Shi, Xiaoyu & Wang, Kaicheng & Zhao, Mingyu & Chen, Fu & Chu, Qingquan, 2022. "Assessing variation and driving factors of the county-scale water footprint for soybean production in China," Agricultural Water Management, Elsevier, vol. 263(C).
    4. Cailin Wang & Enliang Guo & Yongfang Wang & Buren Jirigala & Yao Kang & Ye Zhang, 2023. "Spatiotemporal variations in drought and waterlogging and their effects on maize yields at different growth stages in Jilin Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 155-180, August.
    5. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    6. Zeng, Ruiyun & Lin, Xiaomao & Welch, Stephen M. & Yang, Shanshan & Huang, Na & Sassenrath, Gretchen F. & Yao, Fengmei, 2023. "Impact of water deficit and irrigation management on winter wheat yield in China," Agricultural Water Management, Elsevier, vol. 287(C).
    7. Junjun Cao & Guoyong Leng & Peng Yang & Qingbo Zhou & Wenbin Wu, 2022. "Variability in Crop Response to Spatiotemporal Variation in Climate in China, 1980–2014," Land, MDPI, vol. 11(8), pages 1-13, July.
    8. Peipei Zhang & Yuanyuan Qu & Ye Qiang & Yang Xiao & Chengjun Chu & Changbo Qin, 2023. "Indicators, Goals, and Assessment of the Water Sustainability in China: A Provincial and City—Level Study," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
    9. Wang, Jianqing & Liu, Xiaoyu & Cheng, Kun & Zhang, Xuhui & Li, Lianqing & Pan, Genxing, 2018. "Winter wheat water requirement and utilization efficiency under simulated climate change conditions: A Penman-Monteith model evaluation," Agricultural Water Management, Elsevier, vol. 197(C), pages 100-109.
    10. Wu, Bingfang & Ma, Zonghan & Boken, Vijendra K. & Zeng, Hongwei & Shang, Jiali & Igor, Savin & Wang, Jinxia & Yan, Nana, 2022. "Regional differences in the performance of drought mitigation measures in 12 major wheat-growing regions of the world," Agricultural Water Management, Elsevier, vol. 273(C).
    11. Xi Deng & Yao Huang & Wenjuan Sun & Lingfei Yu & Xunyu Hu & Sheng Wang, 2019. "Different Time Windows Provide Divergent Estimates of Climate Variability and Change Impacts on Maize Yield in Northeast China," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
    12. Huang, Hongrong & Zhuo, La & Wang, Wei & Wu, Pute, 2023. "Resilience assessment of blue and green water resources for staple crop production in China," Agricultural Water Management, Elsevier, vol. 288(C).
    13. Manal Ammari & Mohammed Chentouf & Mohammed Ammari & Laïla Ben Allal, 2022. "Assessing National Progress in Achieving the Sustainable Development Goals: A Case Study of Morocco," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
    14. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    15. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    16. El-Saied E. Metwaly & Hatim M. Al-Yasi & Esmat F. Ali & Hamada A. Farouk & Saad Farouk, 2022. "Deteriorating Harmful Effects of Drought in Cucumber by Spraying Glycinebetaine," Agriculture, MDPI, vol. 12(12), pages 1-16, December.
    17. Chi Zhang & Zhongchang Sun & Qiang Xing & Jialong Sun & Tianyu Xia & Hao Yu, 2021. "Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    18. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    19. Chrisendo, Daniel, 2023. "Gender-based discrimination and global crop yield," 2023 Annual Meeting, July 23-25, Washington D.C. 335489, Agricultural and Applied Economics Association.
    20. Xiaojun Zhang & Weiqiao Wang & Yunan Bai & Yong Ye, 2022. "How Has China Structured Its Ecological Governance Policy System?—A Case from Fujian Province," IJERPH, MDPI, vol. 19(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:308:y:2022:i:c:s0306261921016081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.