IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v288y2023ics0378377423003505.html
   My bibliography  Save this article

Resilience assessment of blue and green water resources for staple crop production in China

Author

Listed:
  • Huang, Hongrong
  • Zhuo, La
  • Wang, Wei
  • Wu, Pute

Abstract

Blue water (irrigation water) and green water (soil moisture), as natural bases in crop production, are vulnerable to natural and socioeconomic disturbances. However, quantitative resilience assessments of blue and green water for crop production are still lacking. Here we constructed a social-ecological based general water resilience assessment framework that distinguishes blue and green water for crop production in four dimensions, including resistance, absorptive capacity, adaptive capacity and transformative capacity. The framework was applied to quantify the spatiotemporal characteristics of water resource resilience for three staple crops (rice, wheat, and maize) at provincial level in mainland China over 2000–2017. Results indicate that water resilience related to crop production of China as a whole was at the lower-middle level over the study period. The green water resilience had higher initial performance, while the blue water resilience had a faster growth rate (>50%). The performance of adaptive and transformative capacity was 8.9∼153.7% better than resistance and absorptive capacity. There were significant heterogeneities in the water resilience score among crops and in time and space. Wheat had the highest resilience of green water, while its blue water resilience was the lowest among the three crops. The water resilience for crop production varied by up to 2.4-fold across provinces. Synergies and trade-offs among the four dimensions of water resilience were further evaluated. The current study provides an effective approach for assessing the state and progress of resilience of regional water resources for crop production.

Suggested Citation

  • Huang, Hongrong & Zhuo, La & Wang, Wei & Wu, Pute, 2023. "Resilience assessment of blue and green water resources for staple crop production in China," Agricultural Water Management, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003505
    DOI: 10.1016/j.agwat.2023.108485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423003505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Quentin Grafton & Luc Doyen & Christophe Béné & Edoardo Borgomeo & Kate Brooks & Long Chu & Graeme S. Cumming & John Dixon & Stephen Dovers & Dustin Garrick & Ariella Helfgott & Qiang Jiang & Pamel, 2019. "Realizing resilience for decision-making," Nature Sustainability, Nature, vol. 2(10), pages 907-913, October.
      • R. Quentin Grafton & Luc Doyen & Christophe Béné & Edoardo Borgomeo & Kate Brooks & Long Chu & Graeme S. Cumming & John Dixon & Stephen Dovers & Dustin Garrick & Ariella Helfgott & Qiang Jiang & Pamel, 2019. "Realizing resilience for decision-making," Post-Print hal-02733372, HAL.
    2. C. Béné & Luc Doyen, 2018. "From Resistance to Transformation: A Generic Metric of Resilience Through Viability," Post-Print hal-03118040, HAL.
    3. Lu, Chengpeng & Ji, Wei & Hou, Muchen & Ma, Tianyang & Mao, Jinhuang, 2022. "Evaluation of efficiency and resilience of agricultural water resources system in the Yellow River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    4. Sharifi, Ayyoob & Yamagata, Yoshiki, 2016. "Principles and criteria for assessing urban energy resilience: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1654-1677.
    5. Zhenci Xu & Sophia N. Chau & Xiuzhi Chen & Jian Zhang & Yingjie Li & Thomas Dietz & Jinyan Wang & Julie A. Winkler & Fan Fan & Baorong Huang & Shuxin Li & Shaohua Wu & Anna Herzberger & Ying Tang & De, 2020. "Assessing progress towards sustainable development over space and time," Nature, Nature, vol. 577(7788), pages 74-78, January.
    6. Isaac Gershon Kodwo Ansah & Cornelis Gardebroek & Rico Ihle, 2019. "Resilience and household food security: a review of concepts, methodological approaches and empirical evidence," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(6), pages 1187-1203, December.
    7. Cao, Xinchun & Bao, Yutong & Li, Yueyao & Li, Jianni & Wu, Mengyang, 2023. "Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity," Agricultural Water Management, Elsevier, vol. 278(C).
    8. Adrienne Grêt-Regamey & Sibyl H. Huber & Robert Huber, 2019. "Actors’ diversity and the resilience of social-ecological systems to global change," Nature Sustainability, Nature, vol. 2(4), pages 290-297, April.
    9. Thomas Elmqvist & Erik Andersson & Niki Frantzeskaki & Timon McPhearson & Per Olsson & Owen Gaffney & Kazuhiko Takeuchi & Carl Folke, 2019. "Sustainability and resilience for transformation in the urban century," Nature Sustainability, Nature, vol. 2(4), pages 267-273, April.
    10. Richard S. Cottrell & Kirsty L. Nash & Benjamin S. Halpern & Tomas A. Remenyi & Stuart P. Corney & Aysha Fleming & Elizabeth A. Fulton & Sara Hornborg & Alexandra Johne & Reg A. Watson & Julia L. Blan, 2019. "Food production shocks across land and sea," Nature Sustainability, Nature, vol. 2(2), pages 130-137, February.
    11. Nathaniel D. Mueller & James S. Gerber & Matt Johnston & Deepak K. Ray & Navin Ramankutty & Jonathan A. Foley, 2012. "Closing yield gaps through nutrient and water management," Nature, Nature, vol. 490(7419), pages 254-257, October.
    12. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    13. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    2. Chi Zhang & Zhongchang Sun & Qiang Xing & Jialong Sun & Tianyu Xia & Hao Yu, 2021. "Localizing Indicators of SDG11 for an Integrated Assessment of Urban Sustainability—A Case Study of Hainan Province," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
    3. Yusuke Toyoda, 2021. "Survey paper: achievements and perspectives of community resilience approaches to societal systems," Asia-Pacific Journal of Regional Science, Springer, vol. 5(3), pages 705-756, October.
    4. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    5. Andrea Di Ronco & Francesca Giacobbo & Antonio Cammi, 2020. "A Kalman Filter-Based Approach for Online Source-Term Estimation in Accidental Radioactive Dispersion Events," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    6. Dmitry Gromov & Thorsten Upmann, 2021. "Dynamics and Economics of Shallow Lakes: A Survey," Sustainability, MDPI, vol. 13(24), pages 1-16, December.
    7. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    8. Cuilleret, Mathieu & Doyen, Luc & Gomes, Hélène & Blanchard, Fabian, 2022. "Resilience management for coastal fisheries facing with global changes and uncertainties," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 634-656.
    9. Grafton, R. Quentin & Squires, Dale & Steinshamn, Stein Ivar, 2023. "Towards resilience-based management of marine capture fisheries," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 231-238.
    10. Zhang, Chun & Dong, Zhaoyun & Guo, Qin & Hu, Zhilin & Li, Juan & Wei, Ting & Ding, Ruixia & Cai, Tie & Ren, Xiaolong & Han, Qingfang & Zhang, Peng & Jia, Zhikuan, 2022. "Ridge–furrow rainwater harvesting combined with supplementary irrigation: Water-saving and yield-maintaining mode for winter wheat in a semiarid region based on 8-year in-situ experiment," Agricultural Water Management, Elsevier, vol. 259(C).
    11. Vassilis Aschonitis & Christos G. Karydas & Miltos Iatrou & Spiros Mourelatos & Irini Metaxa & Panagiotis Tziachris & George Iatrou, 2019. "An Integrated Approach to Assessing the Soil Quality and Nutritional Status of Large and Long-Term Cultivated Rice Agro-Ecosystems," Agriculture, MDPI, vol. 9(4), pages 1-25, April.
    12. Liao, Renkuan & Zhang, Shirui & Zhang, Xin & Wang, Mingfei & Wu, Huarui & Zhangzhong, Lili, 2021. "Development of smart irrigation systems based on real-time soil moisture data in a greenhouse: Proof of concept," Agricultural Water Management, Elsevier, vol. 245(C).
    13. Vanessa Assumma & Marta Bottero & Giulia Datola & Elena De Angelis & Roberto Monaco, 2019. "Dynamic Models for Exploring the Resilience in Territorial Scenarios," Sustainability, MDPI, vol. 12(1), pages 1-19, December.
    14. Peipei Zhang & Yuanyuan Qu & Ye Qiang & Yang Xiao & Chengjun Chu & Changbo Qin, 2023. "Indicators, Goals, and Assessment of the Water Sustainability in China: A Provincial and City—Level Study," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
    15. Christophe Béné, 2020. "Resilience of local food systems and links to food security – A review of some important concepts in the context of COVID-19 and other shocks," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 805-822, August.
    16. Chu, Long & Grafton, R. Quentin & Kompas, Tom, 2022. "Optimisation of economic performance and stock resilience in marine capture fisheries," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 863-875.
    17. Mathieu Cuilleret & Luc Doyen & Hélène Gomes & Fabian Blanchard, 2021. "Resilience-based management for small-scale fisheries in the face of global changes and uncertainties," Bordeaux Economics Working Papers 2021-20, Bordeaux School of Economics (BSE).
    18. Manal Ammari & Mohammed Chentouf & Mohammed Ammari & Laïla Ben Allal, 2022. "Assessing National Progress in Achieving the Sustainable Development Goals: A Case Study of Morocco," Sustainability, MDPI, vol. 14(23), pages 1-29, November.
    19. Cao, Juan & Zhang, Zhao & Tao, Fulu & Chen, Yi & Luo, Xiangzhong & Xie, Jun, 2023. "Forecasting global crop yields based on El Nino Southern Oscillation early signals," Agricultural Systems, Elsevier, vol. 205(C).
    20. Blake-Rath, Robyn & Grote, Ulrike, 2022. "Resilienz und Digitalisierung in der deutschen Agrarwirtschaft: Lehren aus der COVID-19-Pandemie," 62nd Annual Conference, Stuttgart, Germany, September 7-9, 2022 329610, German Association of Agricultural Economists (GEWISOLA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:288:y:2023:i:c:s0378377423003505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.