IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v312y2025ics0378377425001702.html
   My bibliography  Save this article

Resilience assessment of interprovincial crop virtual water flow network in China

Author

Listed:
  • Huang, Hongrong
  • Zhuo, La
  • Wu, Yiping
  • Liu, Yilin
  • Ji, Xiangxiang
  • Wu, Pute

Abstract

The crop-related virtual water (VW) flow has reshaped the water resources burdens virtually and caused increasingly vulnerabilities under natural and anthropogenic pressures and shocks. However, the resilience assessment of crop VW networks remains lacking. Here, we first constructed China’s interprovincial VW flow network by simulating crop trade based on minimum-cost linear optimization and calculating VW content using AquaCrop model. We then analyzed network topological properties including connectivity, betweenness centrality, and community structure. Finally, we evaluated network resilience through four dimensions (resistance, absorptive, adaptive, and transformative capacities) by simulating structural and functional responses under both intentional and random node failure scenarios for three major crops (rice, wheat, and maize). Results show that the total inter-provincial VW and crop trade of increased by 57.8 % and 106.4 %, respectively from 2000 to 2017. Although trade edges increased by 11 %-12 % during the study period, the overall VW network density remained low with maximum of 0.2. The resilience of blue VW networks for rice, wheat, and maize cumulatively decreased by 69.4 %, 81.9 %, and 44.7 %, respectively, under intentional attacks of the top 20 % nodes (six provinces). Notably, the wheat blue VW network was the most vulnerable as key domain provinces facing the water scarcity risk. Our analysis reveals that China’s crop VW flow network are vulnerable to targeted disruptions due to their low connectivity and high dependence on water-scarce producing provinces, highlighting the urgent need for diversifying VW flow patterns and strengthening water resource management in key exporting regions.

Suggested Citation

  • Huang, Hongrong & Zhuo, La & Wu, Yiping & Liu, Yilin & Ji, Xiangxiang & Wu, Pute, 2025. "Resilience assessment of interprovincial crop virtual water flow network in China," Agricultural Water Management, Elsevier, vol. 312(C).
  • Handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001702
    DOI: 10.1016/j.agwat.2025.109456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377425001702
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2025.109456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:312:y:2025:i:c:s0378377425001702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.