IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v156y2015icp542-554.html
   My bibliography  Save this article

Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis

Author

Listed:
  • Gao, Cuixia
  • Sun, Mei
  • Shen, Bo

Abstract

From June 2014 to January 2015, the slumped price of crude oil mainly be caused by the increasing shale gas in the U.S. The market of crude oil was altered by the variation of natural gas trade patterns. It implies that the international fossil energy trade is a multilayer structure, and each layer is a complex system with numerous countries and complicated relations. In this paper, we build the international fossil energy trade multilayer network (ETMN), and study the evolutionary characteristics of networks during 2002–2013. The generalization of several important indicators, including degree distribution, community, stability of communities and the time-varying evolution of main countries’ importance were discussed. Our conclusions suggest that: Firstly, the ETMN and three energy-specific networks including coal, oil, and natural gas display the scale-free characteristic in un-weighted and weighted networks. However, it shows that even if a few countries have major trading partners, there are not always a few countries that play critical roles in trade intensity. Secondly, the natural gas network has the largest number of communities and stability compared with networks of coal and oil, and the volatility of stability lagged one year than the other two networks for the specific form of pipeline transportation. Thirdly, studying on the stability of networks shows that geopolitical environment is the most important influenced factor, but the status of renewable and new energy increases with its development obviously. Fourthly, the evolutionary characteristics of three major countries’ importance, including United States, China and Japan, are analyzed in detail. At last, some policy suggestions were pointed out according to the results.

Suggested Citation

  • Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
  • Handle: RePEc:eee:appene:v:156:y:2015:i:c:p:542-554
    DOI: 10.1016/j.apenergy.2015.07.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915008831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.07.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fagiolo, Giorgio & Reyes, Javier & Schiavo, Stefano, 2008. "On the topological properties of the world trade web: A weighted network analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3868-3873.
    2. Tiziano Squartini & Giorgio Fagiolo & Diego Garlaschelli, 2011. "Randomizing world trade. I. A binary network analysis," Papers 1103.1243, arXiv.org, revised Nov 2011.
    3. Matteo Barigozzi & Giorgio Fagiolo & Diego Garlaschelli, 2009. "Multinetwork of international trade: A commodity-specific analysis," Papers 0908.1879, arXiv.org, revised Jun 2010.
    4. Chen, Jiayu & Jain, Rishee K. & Taylor, John E., 2013. "Block Configuration Modeling: A novel simulation model to emulate building occupant peer networks and their impact on building energy consumption," Applied Energy, Elsevier, vol. 105(C), pages 358-368.
    5. Baskaran, Thushyanthan & Blöchl, Florian & Brück, Tilman & Theis, Fabian J., 2011. "The Heckscher-Ohlin model and the network structure of international trade," International Review of Economics & Finance, Elsevier, vol. 20(2), pages 135-145, April.
    6. Hoppe, K. & Rodgers, G.J., 2015. "A microscopic study of the fitness-dependent topology of the world trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 64-74.
    7. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    8. An, Haizhong & Gao, Xiangyun & Fang, Wei & Ding, Yinghui & Zhong, Weiqiong, 2014. "Research on patterns in the fluctuation of the co-movement between crude oil futures and spot prices: A complex network approach," Applied Energy, Elsevier, vol. 136(C), pages 1067-1075.
    9. Zhang, Hai-Ying & Ji, Qiang & Fan, Ying, 2014. "Competition, transmission and pattern evolution: A network analysis of global oil trade," Energy Policy, Elsevier, vol. 73(C), pages 312-322.
    10. Tiziano Squartini & Giorgio Fagiolo & Diego Garlaschelli, 2011. "Randomizing world trade. II. A weighted network analysis," Papers 1103.1249, arXiv.org, revised Nov 2011.
    11. Lu, Weiwei & Su, Meirong & Zhang, Yan & Yang, Zhifeng & Chen, Bin & Liu, Gengyuan, 2014. "Assessment of energy security in China based on ecological network analysis: A perspective from the security of crude oil supply," Energy Policy, Elsevier, vol. 74(C), pages 406-413.
    12. Sun, Mei & Zhang, Pei-Pei & Shan, Tian-Hua & Fang, Cui-Cui & Wang, Xiao-Fang & Tian, Li-Xin, 2012. "Research on the evolution model of an energy supply–demand network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(19), pages 4506-4516.
    13. Giorgio Fagiolo, 2010. "The international-trade network: gravity equations and topological properties," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 5(1), pages 1-25, June.
    14. Geng, Jiang-Bo & Ji, Qiang & Fan, Ying, 2014. "A dynamic analysis on global natural gas trade network," Applied Energy, Elsevier, vol. 132(C), pages 23-33.
    15. Zhong, Weiqiong & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2014. "The evolution of communities in the international oil trade network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 42-52.
    16. An, Haizhong & Zhong, Weiqiong & Chen, Yurong & Li, Huajiao & Gao, Xiangyun, 2014. "Features and evolution of international crude oil trade relationships: A trading-based network analysis," Energy, Elsevier, vol. 74(C), pages 254-259.
    17. Fan, Ying & Ren, Suting & Cai, Hongbo & Cui, Xuefeng, 2014. "The state's role and position in international trade: A complex network perspective," Economic Modelling, Elsevier, vol. 39(C), pages 71-81.
    18. Bale, Catherine S.E. & Varga, Liz & Foxon, Timothy J., 2015. "Energy and complexity: New ways forward," Applied Energy, Elsevier, vol. 138(C), pages 150-159.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Guan & Haizhong An & Xiaoqing Hao & Xiaoliang Jia, 2016. "The Impact of Countries’ Roles on the International Photovoltaic Trade Pattern: The Complex Networks Analysis," Sustainability, MDPI, vol. 8(4), pages 1-16, March.
    2. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    3. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    4. Yang, Yu & Poon, Jessie P.H. & Liu, Yi & Bagchi-Sen, Sharmistha, 2015. "Small and flat worlds: A complex network analysis of international trade in crude oil," Energy, Elsevier, vol. 93(P1), pages 534-543.
    5. Hou, Wenyu & Liu, Huifang & Wang, Hui & Wu, Fengyang, 2018. "Structure and patterns of the international rare earths trade: A complex network analysis," Resources Policy, Elsevier, vol. 55(C), pages 133-142.
    6. Marco Dueñas & Giorgio Fagiolo, 2014. "Global Trade Imbalances: A Network Approach," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 17(03n04), pages 1-29.
    7. Xi, Xian & Zhou, Jinsheng & Gao, Xiangyun & Liu, Donghui & Zheng, Huiling & Sun, Qingru, 2019. "Impact of changes in crude oil trade network patterns on national economy," Energy Economics, Elsevier, vol. 84(C).
    8. Xibo Wang & Jianping Ge & Wendong Wei & Hanshi Li & Chen Wu & Ge Zhu, 2016. "Spatial Dynamics of the Communities and the Role of Major Countries in the International Rare Earths Trade: A Complex Network Analysis," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-22, May.
    9. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Dai, Tao & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "Global pattern of the international fossil fuel trade: The evolution of communities," Energy, Elsevier, vol. 123(C), pages 260-270.
    10. An, Qier & An, Haizhong & Wang, Lang & Gao, Xiangyun & Lv, Na, 2015. "Analysis of embodied exergy flow between Chinese industries based on network theory," Ecological Modelling, Elsevier, vol. 318(C), pages 26-35.
    11. Zhu, Bo & Liu, Jiahao & Lin, Renda & Chevallier, Julien, 2021. "Cross-border systemic risk spillovers in the global oil system: Does the oil trade pattern matter?," Energy Economics, Elsevier, vol. 101(C).
    12. Yujing Wang & Fu Ren & Ruoxin Zhu & Qingyun Du, 2020. "An Exploratory Analysis of Networked and Spatial Characteristics of International Natural Resource Trades (2000–2016)," Sustainability, MDPI, vol. 12(18), pages 1-34, September.
    13. Ruijin Du & Gaogao Dong & Lixin Tian & Minggang Wang & Guochang Fang & Shuai Shao, 2016. "Spatiotemporal Dynamics and Fitness Analysis of Global Oil Market: Based on Complex Network," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-17, October.
    14. Hao, Xiaoqing & An, Haizhong & Qi, Hai & Gao, Xiangyun, 2016. "Evolution of the exergy flow network embodied in the global fossil energy trade: Based on complex network," Applied Energy, Elsevier, vol. 162(C), pages 1515-1522.
    15. Huan Chen & Lixin Tian & Minggang Wang & Zaili Zhen, 2017. "Analysis of the Dynamic Evolutionary Behavior of American Heating Oil Spot and Futures Price Fluctuation Networks," Sustainability, MDPI, vol. 9(4), pages 1-29, April.
    16. Wang, Xingxing & Li, Huajiao & Yao, Huajun & Chen, Zhihua & Guan, Qing, 2019. "Network feature and influence factors of global nature graphite trade competition," Resources Policy, Elsevier, vol. 60(C), pages 153-161.
    17. Cappelli, Federica & Carnazza, Giovanni & Vellucci, Pierluigi, 2023. "Crude oil, international trade and political stability: Do network relations matter?," Energy Policy, Elsevier, vol. 176(C).
    18. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).
    19. Nobi, Ashadun & Lee, Tae Ho & Lee, Jae Woo, 2020. "Structure of trade flow networks for world commodities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    20. Giorgio Fagiolo & Tiziano Squartini & Diego Garlaschelli, 2013. "Null models of economic networks: the case of the world trade web," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 75-107, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:156:y:2015:i:c:p:542-554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.