IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v278y2023ics0378377423000306.html
   My bibliography  Save this article

Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity

Author

Listed:
  • Cao, Xinchun
  • Bao, Yutong
  • Li, Yueyao
  • Li, Jianni
  • Wu, Mengyang

Abstract

There was presently a lack of multidimensional investigation on the impact of virtual water flow (VWF) on regional water use and scarcity. A framework for impact analysis of VWF in consideration of blue, green and grey water differentiation, taking the crop-water relationship estimation in 31 provinces of China as case study, was established in current paper. Results showed that, VWF, which mainly from northern to eastern plain and southeast, reduced agricultural water footprints by 8.3 (blue), 322.0 (green) and 52.5 (grey) G m3. National water stress index reduced from 1.20 (severe water stress) to 0.92 (high water stress), comparing crop consumption to production perspectives. VWF alleviated the resource-based water scarcity attributed to green water stress in south of the Yangtze River, and transformed the resource-based to systematic water scarcity in Xinjiang (XJ). Clarifying the influences of VWF on blue, green and grey water is the innovation of the analytical framework proposed in current paper.

Suggested Citation

  • Cao, Xinchun & Bao, Yutong & Li, Yueyao & Li, Jianni & Wu, Mengyang, 2023. "Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity," Agricultural Water Management, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377423000306
    DOI: 10.1016/j.agwat.2023.108165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423000306
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108165?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Gerkani Nezhad Moshizi, Zahra & Shamili, Mansoureh, 2019. "Virtual water trade and water footprint accounting of Saffron production in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 368-374.
    2. Rui Shu & Xinchun Cao & Mengyang Wu, 2021. "Clarifying Regional Water Scarcity in Agriculture based on the Theory of Blue, Green and Grey Water Footprints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1101-1118, February.
    3. Flannery Dolan & Jonathan Lamontagne & Robert Link & Mohamad Hejazi & Patrick Reed & Jae Edmonds, 2021. "Evaluating the economic impact of water scarcity in a changing world," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Xinchun Cao & Jianfeng Xiao & Mengyang Wu & Wen Zeng & Xuan Huang, 2021. "Agricultural Water Use Efficiency and Driving Force Assessment to Improve Regional Productivity and Effectiveness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2519-2535, June.
    5. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Hongrong & Zhuo, La & Wang, Wei & Wu, Pute, 2023. "Resilience assessment of blue and green water resources for staple crop production in China," Agricultural Water Management, Elsevier, vol. 288(C).
    2. Abdullah Alodah, 2023. "Towards Sustainable Water Resources Management Considering Climate Change in the Case of Saudi Arabia," Sustainability, MDPI, vol. 15(20), pages 1-29, October.
    3. Xueqing Zhao & Jin Shi & Meixia Liu & Saud Uz Zafar & Qin Liu & Ishaq A. Mian & Bushra Khan & Shadman Khan & Yan Zhuang & Wenyi Dong & Enke Liu, 2023. "Spatial Characteristics and Driving Forces of the Water Footprint of Spring Maize Production in Northern China," Agriculture, MDPI, vol. 13(9), pages 1-17, September.
    4. Bader Alhafi Alotaibi & Mirza Barjees Baig & Mohamed M. M. Najim & Ashfaq Ahmad Shah & Yosef A. Alamri, 2023. "Water Scarcity Management to Ensure Food Scarcity through Sustainable Water Resources Management in Saudi Arabia," Sustainability, MDPI, vol. 15(13), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunfei Feng & Yi Zhang & Zhaodan Wu & Quanliang Ye & Xinchun Cao, 2023. "Evaluation of Agricultural Eco-Efficiency and Its Spatiotemporal Differentiation in China, Considering Green Water Consumption and Carbon Emissions Based on Undesired Dynamic SBM-DEA," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    2. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Xinchun Cao & Jianfeng Xiao & Mengyang Wu & Wen Zeng & Xuan Huang, 2021. "Agricultural Water Use Efficiency and Driving Force Assessment to Improve Regional Productivity and Effectiveness," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2519-2535, June.
    4. Cao, Xinchun & Cui, Simeng & Shu, Rui & Wu, Mengyang, 2020. "Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation," Agricultural Water Management, Elsevier, vol. 241(C).
    5. Cui, Simeng & Wu, Mengyang & Huang, Xuan & Wang, Xiaojun & Cao, Xinchun, 2022. "Sustainability and assessment of factors driving the water-energy-food nexus in pumped irrigation systems," Agricultural Water Management, Elsevier, vol. 272(C).
    6. Cao, Xinchun & Li, Yueyao & Wu, Mengyang, 2022. "Irrigation water use and efficiency assessment coupling crop cultivation, commutation and consumption processes," Agricultural Water Management, Elsevier, vol. 261(C).
    7. Qiting Zuo & Yixuan Diao & Lingang Hao & Chunhui Han, 2020. "Comprehensive Evaluation of the Human-Water Harmony Relationship in Countries Along the “Belt and Road”," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(13), pages 4019-4035, October.
    8. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    9. Li, Shangge & Jian, Jinfeng & Poopal, Rama Krishnan & Chen, Xinyu & He, Yaqi & Xu, Hongbin & Yu, Huimin & Ren, Zongming, 2022. "Mathematical modeling in behavior responses: The tendency-prediction based on a persistence model on real-time data," Ecological Modelling, Elsevier, vol. 464(C).
    10. Ruifan Xu & Jianzhong Gao, 2023. "Evolutionary Trends, Regional Differences and Influencing Factors of the Green Efficiency of Agricultural Water Use in China Based on WF-GTWR Model," IJERPH, MDPI, vol. 20(3), pages 1-24, January.
    11. Mohammadreza Ramezani & Arash Dourandish & Tinoush Jamali Jaghdani & Milad Aminizadeh, 2022. "The Influence of Dense Planting System on the Technical Efficiency of Saffron Production and Land Use Sustainability: Empirical Evidence from Gonabad County, Iran," Agriculture, MDPI, vol. 12(1), pages 1-19, January.
    12. Ramezani, Mohammadreza & Dourandish, Arash & Jamali Jaghdani, Tinoush & Aminizadeh, Milad, 2022. "The influence of dense planting system on the technical efficiency of saffron production and land use sustainability: Empirical evidence from Gonabad county, Iran," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(1).
    13. Seijger, Chris & Hellegers, Petra, 2023. "How do societies reform their agricultural water management towards new priorities for water, agriculture, and the environment?," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Ma, Weijing & Meng, Lihong & Wei, Feili & Opp, Christian & Yang, Dewei, 2021. "Spatiotemporal variations of agricultural water footprint and socioeconomic matching evaluation from the perspective of ecological function zone," Agricultural Water Management, Elsevier, vol. 249(C).
    15. Fulop Arpad-Zoltan & Fulop Kinga-Erzsebet, 2023. "Perspectives Of The Circular Economy For Water And Sewage Operators In Romania," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 125-129, December.
    16. Subramaniam, Vijaya & Hashim, Zulkifli & Loh, Soh Kheang & Astimar, Abdul Aziz, 2020. "Assessing water footprint for the oil palm supply chain- a cradle to gate study," Agricultural Water Management, Elsevier, vol. 237(C).
    17. Marta García-Mollá & Rosa Puertas & Carles Sanchis-Ibor, 2021. "Application of Data Envelopment Analysis to Evaluate Investments in the Modernization of Collective Management Irrigation Systems in Valencia (Spain)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5011-5027, November.
    18. Gerkani Nezhad Moshizi, Zahra & Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Esmaeilpour, Yahya & Collins, Brain, 2023. "Application of inclusive multiple model for the prediction of saffron water footprint," Agricultural Water Management, Elsevier, vol. 277(C).
    19. Peder Hjorth & Kaveh Madani, 2023. "Adaptive Water Management: On the Need for Using the Post-WWII Science in Water Governance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2247-2270, May.
    20. Huan Liu & Guangyuan Niu & Qingxiang Zhang & Yuxi Yang & Hong Yao, 2022. "Town-Level Aquatic Environmental Sensitivity Assessment Based on an Improved Ecological Footprint Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 763-777, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:278:y:2023:i:c:s0378377423000306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.