IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v241y2020ics0378377420310143.html
   My bibliography  Save this article

Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation

Author

Listed:
  • Cao, Xinchun
  • Cui, Simeng
  • Shu, Rui
  • Wu, Mengyang

Abstract

Water saving by agricultural virtual water trade (VWT) is regarded as a new way to address water shortage, and many studies have considered it at local and global scales. However, the existing calculation methods do not consider how agricultural products should be produced in export and import areas without crop trade. We believe that three facts related to irrigation should be considered in water saving in agricultural VWT evaluation: 1) arable land is highly restricted, 2) irrigation increases crop yield significantly, and 3) green water does not require cost. The role of irrigation, which is important for both the export and import region, is very important for determining how to cultivate crops without virtual water trade. In the case of grain VWT between Heilongjiang and Guangdong, China, the national blue water saving in 2010 with this consideration was −2562.1 Mm³ (water loss), whereas the figure was 975 Mm³ under the existing calculation framework. Therefore, there is a possibility that VWT can be used in agricultural development and water management decision-making while considering the role of irrigation.

Suggested Citation

  • Cao, Xinchun & Cui, Simeng & Shu, Rui & Wu, Mengyang, 2020. "Misestimation of water saving in agricultural virtual water trade by not considering the role of irrigation," Agricultural Water Management, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420310143
    DOI: 10.1016/j.agwat.2020.106355
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377420310143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2020.106355?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dalin, Carole & Qiu, Huanguang & Hanasaki, Naota & Mauzerall, Denise L. & Rodriguez-Iturbe, Ignacio, 2015. "Balancing water resources conservation and food security in China," LSE Research Online Documents on Economics 62725, London School of Economics and Political Science, LSE Library.
    2. Wu, X.D. & Guo, J.L. & Han, M.Y. & Chen, G.Q., 2018. "An overview of arable land use for the world economy: From source to sink via the global supply chain," Land Use Policy, Elsevier, vol. 76(C), pages 201-214.
    3. Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Gerkani Nezhad Moshizi, Zahra & Shamili, Mansoureh, 2019. "Virtual water trade and water footprint accounting of Saffron production in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 368-374.
    4. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," Book Chapters,, International Water Management Institute.
    5. Aldaya, M.M. & Allan, J.A. & Hoekstra, A.Y., 2010. "Strategic importance of green water in international crop trade," Ecological Economics, Elsevier, vol. 69(4), pages 887-894, February.
    6. Cai, X. & Rosegrant, M. W., 2003. "World water productivity: current situation and future options," IWMI Books, Reports H032641, International Water Management Institute.
    7. Akoto-Danso, Edmund Kyei & Karg, Hanna & Drechsel, Pay & Nyarko, George & Buerkert, Andreas, 2019. "Virtual water flow in food trade systems of two West African cities," Agricultural Water Management, Elsevier, vol. 213(C), pages 760-772.
    8. Bazrafshan, Ommolbanin & Zamani, Hossein & Ramezanietedli, Hadi & Gerkaninezhad Moshizi, Zahra & Shamili, Mansoureh & Ismaelpour, Yahya & Gholami, Hamid, 2020. "Improving water management in date palms using economic value of water footprint and virtual water trade concepts in Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    9. Fu, YiCheng & Zhao, Jinyong & Wang, Chengli & Peng, Wenqi & Wang, Qi & Zhang, Chunling, 2018. "The virtual Water flow of crops between intraregional and interregional in mainland China," Agricultural Water Management, Elsevier, vol. 208(C), pages 204-213.
    10. Cao, Xinchun & Zeng, Wen & Wu, Mengyang & Guo, Xiangping & Wang, Weiguang, 2020. "Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Boelens, Rutgerd & Vos, Jeroen, 2012. "The danger of naturalizing water policy concepts: Water productivity and efficiency discourses from field irrigation to virtual water trade," Agricultural Water Management, Elsevier, vol. 108(C), pages 16-26.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehran Hekmatnia & Ahmad Fatahi Ardakani & Amir Isanezhad & Hamidreza Monibi, 2024. "A novel classification of virtual water trade for the sustainability of global freshwater resources," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 7377-7408, March.
    2. Xiuli Liu & Rui Xiong & Pibin Guo & Lei Nie & Qinqin Shi & Wentao Li & Jing Cui, 2022. "Virtual Water Flow Pattern in the Yellow River Basin, China: An Analysis Based on a Multiregional Input–Output Model," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    3. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Liang, Hongbang & Wang, Xingpeng & Wang, Zhenhua & Ma, Changjian & Li, Yunkai, 2022. "Chelated copper reduces yet manganese fertilizer increases calcium-silica fouling in brackish water drip irrigation systems," Agricultural Water Management, Elsevier, vol. 269(C).
    4. Cao, Xinchun & Li, Yueyao & Wu, Mengyang, 2022. "Irrigation water use and efficiency assessment coupling crop cultivation, commutation and consumption processes," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Wang, Yayu & Muhammad, Tahir & Liu, Zeyuan & Ma, Changjian & Zhang, Changsheng & Wang, Zhenhua & He, Xin & Li, Yunkai, 2022. "Compounding with humic acid improved nutrient uniformity in drip fertigation system using brackish water: The perspective of emitter clogging," Agricultural Water Management, Elsevier, vol. 269(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Jie & Xie, Pengxuan & Zhuo, La & Shang, Kehui & Ji, Xiangxiang & Wu, Pute, 2021. "Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    3. Playan, Enrique & Mateos, Luciano, 2006. "Modernization and optimization of irrigation systems to increase water productivity," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 100-116, February.
    4. Mehran Hekmatnia & Ahmad Fatahi Ardakani & Amir Isanezhad & Hamidreza Monibi, 2024. "A novel classification of virtual water trade for the sustainability of global freshwater resources," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(3), pages 7377-7408, March.
    5. repec:osf:osfxxx:tm9na_v1 is not listed on IDEAS
    6. Shahla Dehghanpir & Ommolbanin Bazrafshan & Hadi Ramezani Etedali & Arashk Holisaz & Brian Collins, 2024. "Water scarcity assessment in Iran’s agricultural sector using the water footprint concept," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 28995-29020, November.
    7. Hossain, Istiaque & Alam, Md. Mahmudul & Siwar, Chamhuri & Bin Mokhtar, Mazlin, 2019. "Measurement of Water Productivity in Seasonal Floodplain Beel Area," SocArXiv q3ayc, Center for Open Science.
    8. Cook, Simon, 2006. "Agricultural water productivity: issues, concepts and approaches," IWMI Working Papers H039744, International Water Management Institute.
    9. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    10. Geerts, Sam & Raes, Dirk, 2009. "Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas," Agricultural Water Management, Elsevier, vol. 96(9), pages 1275-1284, September.
    11. Upali A. Amarasinghe & R.P. S. Malik & Bharat R. Sharma, 2010. "Overcoming growing water scarcity: Exploring potential improvements in water productivity in India," Natural Resources Forum, Blackwell Publishing, vol. 34(3), pages 188-199, August.
    12. Christine Heumesser & Sabine Fuss & Jana Szolgayová & Franziska Strauss & Erwin Schmid, 2012. "Investment in Irrigation Systems under Precipitation Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(11), pages 3113-3137, September.
    13. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    14. Hossain, Istiaque & Siwar, Chamhuri & Bin Mokhta, Mazlin & Dey, Madan Mohan & Jaafar, Abd. Hamid & Alam, Md. Mahmudul, 2019. "Water Productivity for Boro Rice Production: Study on floodplain Beels in Rajshahi, Bangladesh," OSF Preprints tm9na, Center for Open Science.
    15. Pandey, Vishnu Prasad & Shrestha, Nirman & Urfels, Anton & Ray, Anupama & Khadka, Manohara & Pavelic, Paul & McDonald, Andrew J. & Krupnik, Timothy J., 2023. "Implementing conjunctive management of water resources for irrigation development: A framework applied to the Southern Plain of Western Nepal," Agricultural Water Management, Elsevier, vol. 283(C).
    16. Oker, Tobias E. & Kisekka, Isaya & Sheshukov, Aleksey Y. & Aguilar, Jonathan & Rogers, Danny H., 2018. "Evaluation of maize production under mobile drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 11-21.
    17. Michael Frei & Klaus Becker, 2005. "Integrated rice‐fish culture: Coupled production saves resources," Natural Resources Forum, Blackwell Publishing, vol. 29(2), pages 135-143, May.
    18. Geries, L.S.M. & El-Shahawy, T.A. & Moursi, E.A., 2021. "Cut-off irrigation as an effective tool to increase water-use efficiency, enhance productivity, quality and storability of some onion cultivars," Agricultural Water Management, Elsevier, vol. 244(C).
    19. Elnour, Razan & Chukalla, Abebe & Mohamed, Yasir A. & Verzijl, Andres, 2024. "Multiscale spatial variability in land and water productivity across the Gezira irrigation scheme, Sudan," Agricultural Water Management, Elsevier, vol. 304(C).
    20. Haileslassie, Amare & Peden, Don & Gebreselassie, Solomon & Amede, Tilahun & Descheemaeker, Katrien, 2009. "Livestock water productivity in mixed crop-livestock farming systems of the Blue Nile basin: Assessing variability and prospects for improvement," Agricultural Systems, Elsevier, vol. 102(1-3), pages 33-40, October.
    21. Rathore, Vijay Singh & Nathawat, Narayan Singh & Bhardwaj, Seema & Sasidharan, Renjith Puthiyedathu & Yadav, Bhagirath Mal & Kumar, Mahesh & Santra, Priyabrata & Yadava, Narendra Dev & Yadav, Om Parka, 2017. "Yield, water and nitrogen use efficiencies of sprinkler irrigated wheat grown under different irrigation and nitrogen levels in an arid region," Agricultural Water Management, Elsevier, vol. 187(C), pages 232-245.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:241:y:2020:i:c:s0378377420310143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.