IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v21y2019i1d10.1007_s10018-018-0224-y.html
   My bibliography  Save this article

Rebound effect across seasons: evidence from the replacement of air conditioners in Japan

Author

Listed:
  • Kenichi Mizobuchi

    (Matsuyama University)

  • Kenji Takeuchi

    (Kobe University)

Abstract

Switching to more energy-efficient appliances may lead to higher energy demand. This phenomenon is known as the rebound effect, which may lead to less power saving than expected prior to the switch. Using a combination of propensity score matching with the difference-in-differences method, we examine the change in household electricity consumption that may be caused by replacing air conditioners with more energy-efficient ones. Based on the results of our estimations, we calculate the magnitude of the rebound effect for summer and winter. We find that the rebound effect is positive in summer and winter, and the magnitude is higher in winter (7.87% versus almost 100%, respectively). The estimated rebound effect is small in summer, implying that the power-saving effect due to switching to energy-efficient air conditioners is sizable. On the other hand, no power-saving effect due to the switch was found in winter.

Suggested Citation

  • Kenichi Mizobuchi & Kenji Takeuchi, 2019. "Rebound effect across seasons: evidence from the replacement of air conditioners in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 21(1), pages 123-140, January.
  • Handle: RePEc:spr:envpol:v:21:y:2019:i:1:d:10.1007_s10018-018-0224-y
    DOI: 10.1007/s10018-018-0224-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-018-0224-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-018-0224-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunt Allcott & Michael Greenstone, 2012. "Is There an Energy Efficiency Gap?," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 3-28, Winter.
    2. Nathan W. Chan & Kenneth Gillingham, 2015. "The Microeconomic Theory of the Rebound Effect and Its Welfare Implications," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(1), pages 133-159.
    3. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2013. "Turning lights into flights: Estimating direct and indirect rebound effects for UK households," Energy Policy, Elsevier, vol. 55(C), pages 234-250.
    4. Lucas W. Davis & Alan Fuchs & Paul Gertler, 2014. "Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 207-238, November.
    5. Gilbert E. Metcalf & Kevin A. Hassett, 1999. "Measuring The Energy Savings From Home Improvement Investments: Evidence From Monthly Billing Data," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 516-528, August.
    6. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    7. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    8. Jeffrey A. Dubin & Allen K. Miedema & Ram V. Chandran, 1986. "Price Effects of Energy-Efficient Technologies: A Study of Residential Demand for Heating and Cooling," RAND Journal of Economics, The RAND Corporation, vol. 17(3), pages 310-325, Autumn.
    9. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," Review of Economic Studies, Oxford University Press, vol. 64(4), pages 605-654.
    10. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    11. Rapson, David, 2014. "Durable goods and long-run electricity demand: Evidence from air conditioner purchase behavior," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 141-160.
    12. Mizobuchi, Kenichi & Takeuchi, Kenji, 2013. "The influences of financial and non-financial factors on energy-saving behaviour: A field experiment in Japan," Energy Policy, Elsevier, vol. 63(C), pages 775-787.
    13. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    14. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    15. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    16. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    17. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," Review of Economic Studies, Oxford University Press, vol. 65(2), pages 261-294.
    18. James Heckman & Hidehiko Ichimura & Jeffrey Smith & Petra Todd, 1998. "Characterizing Selection Bias Using Experimental Data," Econometrica, Econometric Society, vol. 66(5), pages 1017-1098, September.
    19. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    20. Mizobuchi, Kenichi, 2008. "An empirical study on the rebound effect considering capital costs," Energy Economics, Elsevier, vol. 30(5), pages 2486-2516, September.
    21. Lucas W. Davis, 2008. "Durable goods and residential demand for energy and water: evidence from a field trial," RAND Journal of Economics, RAND Corporation, vol. 39(2), pages 530-546, June.
    22. Haas, Reinhard & Biermayr, Peter, 2000. "The rebound effect for space heating Empirical evidence from Austria," Energy Policy, Elsevier, vol. 28(6-7), pages 403-410, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    2. Inoue, Nozomu & Matsumoto, Shigeru, 2019. "An examination of losses in energy savings after the Japanese Top Runner Program?," Energy Policy, Elsevier, vol. 124(C), pages 312-319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kenichi Mizobuchi & Kenji Takeuchi, 2016. "The Rebound Effect in Residential Electricity Use: Evidence from a Propensity Score Matching Estimator," Discussion Papers 1639, Graduate School of Economics, Kobe University.
    2. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    3. Inoue, Nozomu & Matsumoto, Shigeru, 2019. "An examination of losses in energy savings after the Japanese Top Runner Program?," Energy Policy, Elsevier, vol. 124(C), pages 312-319.
    4. Todd D. Gerarden & Richard G. Newell & Robert N. Stavins, 2017. "Assessing the Energy-Efficiency Gap," Journal of Economic Literature, American Economic Association, vol. 55(4), pages 1486-1525, December.
    5. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, Open Access Journal, vol. 10(6), pages 1-17, June.
    6. Aydin, Erdal, 2016. "Energy conservation in the residential sector : The role of policy and market forces," Other publications TiSEM b9cedba8-1310-4097-90fb-b, Tilburg University, School of Economics and Management.
    7. Andor, Mark Andreas & Bernstein, David H. & Sommer, Stephan, 2020. "Determining the efficiency of residential electricity consumption," Ruhr Economic Papers 870, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    8. Fullerton, Don & Ta, Chi L., 2020. "Costs of energy efficiency mandates can reverse the sign of rebound," Journal of Public Economics, Elsevier, vol. 188(C).
    9. Lucas W. Davis & Alan Fuchs & Paul J. Gertler, 2012. "Cash for Coolers," NBER Working Papers 18044, National Bureau of Economic Research, Inc.
    10. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    12. Hediger, Cécile & Farsi, Mehdi & Weber, Sylvain, 2018. "Turn It Up and Open the Window: On the Rebound Effects in Residential Heating," Ecological Economics, Elsevier, vol. 149(C), pages 21-39.
    13. Wang, Jiayu & Yu, Shuao & Liu, Tiansen, 2021. "A theoretical analysis of the direct rebound effect caused by energy efficiency improvement of private consumers," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 171-181.
    14. Anna Alberini, Will Gans, and Charles Towe, 2016. "Free Riding, Upsizing, and Energy Efficiency Incentives in Maryland Homes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. Dorner, Zack, 2019. "A behavioral rebound effect," Journal of Environmental Economics and Management, Elsevier, vol. 98(C).
    16. Belaïd, Fateh & Youssef, Adel Ben & Lazaric, Nathalie, 2020. "Scrutinizing the direct rebound effect for French households using quantile regression and data from an original survey," Ecological Economics, Elsevier, vol. 176(C).
    17. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    18. Davis, Lucas W. & Martinez, Sebastian & Taboada, Bibiana, 2020. "How effective is energy-efficient housing? Evidence from a field trial in Mexico," Journal of Development Economics, Elsevier, vol. 143(C).
    19. Du, Qiang & Han, Xiao & Li, Yi & Li, Zhe & Xia, Bo & Guo, Xiqian, 2021. "The energy rebound effect of residential buildings: Evidence from urban and rural areas in China," Energy Policy, Elsevier, vol. 153(C).
    20. Dorner, Zack, 2017. "A Behavioural Rebound Effect: Results from a laboratory experiment," 2017 Conference, October 19-20, Rotorua, New Zealand 269390, New Zealand Agricultural and Resource Economics Society.

    More about this item

    Keywords

    Space cooling; Space heating; Rebound effect; Propensity score matching; Difference-in-differences;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:21:y:2019:i:1:d:10.1007_s10018-018-0224-y. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.