IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v132y2019icp1333-1344.html
   My bibliography  Save this article

Do government subsidies promote firm-level innovation? Evidence from the Korean renewable energy technology industry

Author

Listed:
  • Sung, Bongsuk

Abstract

This study investigates how government policies affect firm-level innovation. To empirically test this relationship, we use panel data for the Korean renewable energy technology firms. Taking into account the results of various panel framework tests and sample size, we establish a panel vector autoregressive model in the first difference, and use a bias-corrected least squares dummy variable estimator to test complex dynamic relationships between public subsidies, firm heterogeneities (size, age, and slack), industry dynamic competition, and innovation. Based on the estimations, we find that there is a positive bidirectional causal relationship between firms’ innovation and each of the following: research and development (R&D) subsidy, available organizational slack, and industry dynamic competition. Non-R&D subsidy, firm size, and age do not have significant direct effects on firm-level innovation. However, non-R&D subsidy is involved in the relationship between R&D subsidy and firms’ innovation. We discuss some implications based on the findings of this study.

Suggested Citation

  • Sung, Bongsuk, 2019. "Do government subsidies promote firm-level innovation? Evidence from the Korean renewable energy technology industry," Energy Policy, Elsevier, vol. 132(C), pages 1333-1344.
  • Handle: RePEc:eee:enepol:v:132:y:2019:i:c:p:1333-1344
    DOI: 10.1016/j.enpol.2019.03.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519301727
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.03.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malen, Joel & Vaaler, Paul M., 2017. "Organizational slack, national institutions and innovation effort around the world," Journal of World Business, Elsevier, vol. 52(6), pages 782-797.
    2. Negro, Simona O. & Alkemade, Floortje & Hekkert, Marko P., 2012. "Why does renewable energy diffuse so slowly? A review of innovation system problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3836-3846.
    3. Foxon, T. J. & Gross, R. & Chase, A. & Howes, J. & Arnall, A. & Anderson, D., 2005. "UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures," Energy Policy, Elsevier, vol. 33(16), pages 2123-2137, November.
    4. Del Gatto, Massimo & Mion, Giordano & Ottaviano, Gianmarco I.P., 2006. "Trade Integration, Firm Selection and the Costs of Non-Europe," Conference papers 331548, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    5. D’Amato, Alessio & Mazzanti, Massimiliano & Nicolli, Francesco, 2015. "Waste and organized crime in regional environments," Resource and Energy Economics, Elsevier, vol. 41(C), pages 185-201.
    6. Marc J. Melitz & Giancarlo I. P. Ottaviano, 2021. "Market Size, Trade, and Productivity," World Scientific Book Chapters, in: Firms and Workers in a Globalized World Larger Markets, Tougher Competition, chapter 4, pages 87-108, World Scientific Publishing Co. Pte. Ltd..
    7. Dechezlepretre, Antoine & Sato, Misato, 2017. "The impacts of environmental regulations on competitiveness," LSE Research Online Documents on Economics 77700, London School of Economics and Political Science, LSE Library.
    8. Antoine Dechezleprêtre & Misato Sato, 2017. "The Impacts of Environmental Regulations on Competitiveness," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 183-206.
    9. Nick Johnstone & Ivan Haščič & David Popp, 2010. "Renewable Energy Policies and Technological Innovation: Evidence Based on Patent Counts," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 45(1), pages 133-155, January.
    10. M. Hashem Pesaran, 2021. "General diagnostic tests for cross-sectional dependence in panels," Empirical Economics, Springer, vol. 60(1), pages 13-50, January.
    11. Arent, Douglas J. & Wise, Alison & Gelman, Rachel, 2011. "The status and prospects of renewable energy for combating global warming," Energy Economics, Elsevier, vol. 33(4), pages 584-593, July.
    12. Joel A. C. Baum & Kristina B. Dahlin, 2007. "Aspiration Performance and Railroads’ Patterns of Learning from Train Wrecks and Crashes," Organization Science, INFORMS, vol. 18(3), pages 368-385, June.
    13. Joakim Westerlund, 2007. "Testing for Error Correction in Panel Data," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 69(6), pages 709-748, December.
    14. Chen, Wei-Ming & Kim, Hana & Yamaguchi, Hideka, 2014. "Renewable energy in eastern Asia: Renewable energy policy review and comparative SWOT analysis for promoting renewable energy in Japan, South Korea, and Taiwan," Energy Policy, Elsevier, vol. 74(C), pages 319-329.
    15. Conti, C. & Mancusi, M.L. & Sanna-Randaccio, F. & Sestini, R. & Verdolini, E., 2018. "Transition towards a green economy in Europe: Innovation and knowledge integration in the renewable energy sector," Research Policy, Elsevier, vol. 47(10), pages 1996-2009.
    16. Osamu Suzuki, 2018. "Enabling or constraining? Unraveling the influence of organizational slack on innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(3), pages 555-575.
    17. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.
    18. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    19. David Roodman, 2009. "How to do xtabond2: An introduction to difference and system GMM in Stata," Stata Journal, StataCorp LP, vol. 9(1), pages 86-136, March.
    20. Nemet, Gregory F., 2012. "Inter-technology knowledge spillovers for energy technologies," Energy Economics, Elsevier, vol. 34(5), pages 1259-1270.
    21. Antoni, Manfred & Janser, Markus & Lehmer, Florian, 2015. "The hidden winners of renewable energy promotion: Insights into sector-specific wage differentials," Energy Policy, Elsevier, vol. 86(C), pages 595-613.
    22. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting new and renewable energy supply through a bottom-up approach: The case of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 207-217.
    23. Kafle, Sagar & Parajuli, Ranjan & Bhattarai, Sujala & Euh, Seung Hee & Kim, Dae Hyun, 2017. "A review on energy systems and GHG emissions reduction plan and policy of the Republic of Korea: Past, present, and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1123-1130.
    24. Kim, Kyung-Taek & Lee, Deok Joo & Park, Sung-Joon & Zhang, Yanshuai & Sultanov, Azamat, 2015. "Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 694-702.
    25. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
    26. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    27. Han, Dongsu & Baek, Sanghoon, 2017. "Status of renewable capacity for electricity generation and future prospects in Korea: Global trends and domestic strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1524-1533.
    28. M. Hashem Pesaran, 2007. "A simple panel unit root test in the presence of cross-section dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(2), pages 265-312.
    29. Judson, Ruth A. & Owen, Ann L., 1999. "Estimating dynamic panel data models: a guide for macroeconomists," Economics Letters, Elsevier, vol. 65(1), pages 9-15, October.
    30. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    31. Kristina Dahlin & Joel A.C Baum, 2007. "Aspiration performance and railroads' patterns of learning from train wrecks and crashes," Post-Print hal-00480399, HAL.
    32. Kim, Sehyun & Lee, Hyunjae & Kim, Heejin & Jang, Dong-Hwan & Kim, Hyun-Jin & Hur, Jin & Cho, Yoon-Sung & Hur, Kyeon, 2018. "Improvement in policy and proactive interconnection procedure for renewable energy expansion in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 150-162.
    33. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    34. Kahouli-Brahmi, Sondes, 2009. "Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach," Ecological Economics, Elsevier, vol. 68(4), pages 1195-1212, February.
    35. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    36. Bointner, Raphael, 2014. "Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries," Energy Policy, Elsevier, vol. 73(C), pages 733-747.
    37. Kianto, Aino & Sáenz, Josune & Aramburu, Nekane, 2017. "Knowledge-based human resource management practices, intellectual capital and innovation," Journal of Business Research, Elsevier, vol. 81(C), pages 11-20.
    38. Plank, Josef & Doblinger, Claudia, 2018. "The firm-level innovation impact of public R&D funding: Evidence from the German renewable energy sector," Energy Policy, Elsevier, vol. 113(C), pages 430-438.
    39. Bruno, Giovanni S.F., 2005. "Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models," Economics Letters, Elsevier, vol. 87(3), pages 361-366, June.
    40. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    41. Zhang, Xiaoling & Shen, Liyin & Chan, Sum Yee, 2012. "The diffusion of solar energy use in HK: What are the barriers?," Energy Policy, Elsevier, vol. 41(C), pages 241-249.
    42. Jongseok Lee & Jeho Lee & Habin Lee, 2003. "Exploration and Exploitation in the Presence of Network Externalities," Management Science, INFORMS, vol. 49(4), pages 553-570, April.
    43. Nelson, Andrew J., 2009. "Measuring knowledge spillovers: What patents, licenses and publications reveal about innovation diffusion," Research Policy, Elsevier, vol. 38(6), pages 994-1005, July.
    44. Coad, Alex & Segarra, Agustí & Teruel, Mercedes, 2016. "Innovation and firm growth: Does firm age play a role?," Research Policy, Elsevier, vol. 45(2), pages 387-400.
    45. Valeria Costantini & Massimiliano Mazzanti (ed.), 2013. "The Dynamics of Environmental and Economic Systems," Springer Books, Springer, edition 127, number 978-94-007-5089-0, June.
    46. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    47. Natarajan Balasubramanian & Jeongsik Lee, 2008. "Firm age and innovation," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 17(5), pages 1019-1047, October.
    48. Kwon, Tae-hyeong, 2015. "Is the renewable portfolio standard an effective energy policy?: Early evidence from South Korea," Utilities Policy, Elsevier, vol. 36(C), pages 46-51.
    49. Ludig, Sylvie & Schmid, Eva & Haller, Markus & Bauer, Nico, 2015. "Assessment of transformation strategies for the German power sector under the uncertainty of demand development and technology availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 143-156.
    50. Liu, Bih Jane, 2017. "Do bigger and older firms learn more from exporting? — Evidence from China," China Economic Review, Elsevier, vol. 45(C), pages 89-102.
    51. Criscuolo, Paola & Nicolaou, Nicos & Salter, Ammon, 2012. "The elixir (or burden) of youth? Exploring differences in innovation between start-ups and established firms," Research Policy, Elsevier, vol. 41(2), pages 319-333.
    52. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    53. Zheng-Xia He & Shi-Chun Xu & Qin-Bin Li & Bin Zhao, 2018. "Factors That Influence Renewable Energy Technological Innovation in China: A Dynamic Panel Approach," Sustainability, MDPI, vol. 10(1), pages 1-30, January.
    54. Yoon, Jong-Han & Sim, Kwang-ho, 2015. "Why is South Korea's renewable energy policy failing? A qualitative evaluation," Energy Policy, Elsevier, vol. 86(C), pages 369-379.
    55. Hwang, Jung-Ah & Boo, Kyung-Jin, 2018. "Overseas expansion of South Korean renewable energy firms: Status and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2862-2869.
    56. Jacobsson, Staffan & Karltorp, Kersti, 2013. "Mechanisms blocking the dynamics of the European offshore wind energy innovation system – Challenges for policy intervention," Energy Policy, Elsevier, vol. 63(C), pages 1182-1195.
    57. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    58. Costantini, Valeria & Crespi, Francesco & Martini, Chiara & Pennacchio, Luca, 2015. "Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector," Research Policy, Elsevier, vol. 44(3), pages 577-595.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sung, Bongsuk & Soh, Jin Young & Park, Chun Gun, 2022. "Comparing government support, firm heterogeneity, and inter-firm spillovers for productivity enhancement: Evidence from the Korean solar energy technology industry," Energy, Elsevier, vol. 246(C).
    2. Bongsuk Sung & Myoung Shik Choi & Woo-Yong Song, 2019. "Exploring the Effects of Government Policies on Economic Performance: Evidence Using Panel Data for Korean Renewable Energy Technology Firms," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    3. Bongsuk Sung & Cui Wen, 2018. "Causal Dynamic Relationships between Political–Economic Factors and Export Performance in the Renewable Energy Technologies Market," Energies, MDPI, vol. 11(4), pages 1-18, April.
    4. Bongsuk Sung & Woo-Yong Song, 2017. "Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector," Energies, MDPI, vol. 10(12), pages 1-18, December.
    5. Bongsuk Sung & Woo-Yong Song, 2021. "Are Political Factors More Relevant Than Economic Factors in Firm-Level Renewable Energy Technology Export? Evidence from Path Analysis," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    6. Bongsuk Sung & Sang-Do Park, 2018. "Who Drives the Transition to a Renewable-Energy Economy? Multi-Actor Perspective on Social Innovation," Sustainability, MDPI, vol. 10(2), pages 1-32, February.
    7. Sung, Bongsuk & Song, Woo-Yong & Park, Sang-Do, 2018. "How foreign direct investment affects CO2 emission levels in the Chinese manufacturing industry: Evidence from panel data," Economic Systems, Elsevier, vol. 42(2), pages 320-331.
    8. Hyun-Jee Kim & Bongsuk Sung, 2020. "How Knowledge Assets Affect the Learning-by-Exporting Effect: Evidence Using Panel Data for Manufacturing Firms," Sustainability, MDPI, vol. 12(8), pages 1-14, April.
    9. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    10. Peñasco, Cristina & del Río, Pablo & Romero-Jordán, Desiderio, 2017. "Gas and electricity demand in Spanish manufacturing industries: An analysis using homogeneous and heterogeneous estimators," Utilities Policy, Elsevier, vol. 45(C), pages 45-60.
    11. Daniel Goya, 2014. "The Multiple Impacts of the Exchange Rate on Export Diversification," Cambridge Working Papers in Economics 1436, Faculty of Economics, University of Cambridge.
    12. Sung, Bongsuk & Song, Woo-Yong, 2013. "Causality between public policies and exports of renewable energy technologies," Energy Policy, Elsevier, vol. 55(C), pages 95-104.
    13. Montmartin, Benjamin & Herrera, Marcos, 2015. "Internal and external effects of R&D subsidies and fiscal incentives: Empirical evidence using spatial dynamic panel models," Research Policy, Elsevier, vol. 44(5), pages 1065-1079.
    14. Chen, Yang & Fang, Zheng, 2018. "Industrial electricity consumption, human capital investment and economic growth in Chinese cities," Economic Modelling, Elsevier, vol. 69(C), pages 205-219.
    15. Naima Chrid & Sami Saafi & Mohamed Chakroun, 2021. "Export Upgrading and Economic Growth: a Panel Cointegration and Causality Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 12(2), pages 811-841, June.
    16. MAÏ ASSAN CHEDI, Maman, 2022. "Does Defence Expenditure Affect Education and Health expenditures in Saharan Africa?," African Journal of Economic Review, African Journal of Economic Review, vol. 10(4), September.
    17. Nguyen Phuc Canh & Nguyen Thanh Binh & Su Dinh Thanh & Christophe Schinckus, 2020. "Determinants of foreign direct investment inflows: The role of economic policy uncertainty," International Economics, CEPII research center, issue 161, pages 159-172.
    18. T. Gries & M. Redlin, 2020. "Trade and economic development: global causality and development- and openness-related heterogeneity," International Economics and Economic Policy, Springer, vol. 17(4), pages 923-944, October.
    19. Emmanuel Owusu-Sekyere & Reneé van Eyden & Francis M Kemegue, 2014. "Remittances and the Dutch Disease in Sub-Saharan Africa: A Dynamic Panel Approach," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 8(3), September.
    20. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:132:y:2019:i:c:p:1333-1344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.