IDEAS home Printed from https://ideas.repec.org/e/c/pkl84.html
   My authors  Follow this author

Henrik Klinge Jacobsen

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

RePEc Biblio mentions

As found on the RePEc Biblio, the curated bibliography of Economics:
  1. Henrik Klinge Jacobsen & Katja Birr-Pedersen & Mette Wier, 2003. "Distributional Implications of Environmental Taxation in Denmark," Fiscal Studies, Institute for Fiscal Studies, vol. 24(4), pages 477-499, December.

    Mentioned in:

    1. > Environmental and Natural Resource Economics > Climate economics > Abatement costs > Distribution of abatement costs
  2. Wier, Mette & Birr-Pedersen, Katja & Jacobsen, Henrik Klinge & Klok, Jacob, 2005. "Are CO2 taxes regressive? Evidence from the Danish experience," Ecological Economics, Elsevier, vol. 52(2), pages 239-251, January.

    Mentioned in:

    1. > Environmental and Natural Resource Economics > Climate economics > Abatement costs > Distribution of abatement costs

Working papers

  1. Philipp Andreas Gunkel & Febin Kachirayil & Claire-Marie Bergaentzl'e & Russell McKenna & Dogan Keles & Henrik Klinge Jacobsen, 2023. "Uniform taxation of electricity: incentives for flexibility and cost redistribution among household categories," Papers 2306.11566, arXiv.org.

    Cited by:

    1. Jacek Kulawik & Michał Soliwoda & Agnieszka Kurdyś-Kujawska & Justyna Herda-Kopańska & Cezary Klimkowski, 2023. "Cost of Energy Consumption and Return of Excise Tax on Motor Fuels vs. the Durability of Operations and Financial Sustainability in Polish Agriculture," Energies, MDPI, vol. 17(1), pages 1-22, December.

  2. Andersen, Kristoffer Steen & Dockweiler, Steffen & Klinge Jacobsen, Henrik, 2019. "Squaring the energy efficiency circle: evaluating industry energy efficiency policy in a hybrid model setting," MPRA Paper 96546, University Library of Munich, Germany.

    Cited by:

    1. Lee, Hwarang & Kang, Sung Won & Koo, Yoonmo, 2020. "A hybrid energy system model to evaluate the impact of climate policy on the manufacturing sector: Adoption of energy-efficient technologies and rebound effects," Energy, Elsevier, vol. 212(C).

  3. Klinge Jacobsen, Henrik & Hevia-Koch, Pablo & Wolter, Christoph, 2018. "Costs and competitive advantage of nearshore wind energy," MPRA Paper 92869, University Library of Munich, Germany.

    Cited by:

    1. Ren, Zhengru & Verma, Amrit Shankar & Li, Ye & Teuwen, Julie J.E. & Jiang, Zhiyu, 2021. "Offshore wind turbine operations and maintenance: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Florin Onea & Eugen Rusu, 2019. "An Assessment of Wind Energy Potential in the Caspian Sea," Energies, MDPI, vol. 12(13), pages 1-18, July.
    3. McDonagh, Shane & Ahmed, Shorif & Desmond, Cian & Murphy, Jerry D, 2020. "Hydrogen from offshore wind: Investor perspective on the profitability of a hybrid system including for curtailment," Applied Energy, Elsevier, vol. 265(C).

  4. Klinge Jacobsen, Henrik & Juul, Nina, 2015. "Demand side management - electricity savings in Danish households reduce load variation, capacity requirements and associated emission," MPRA Paper 80060, University Library of Munich, Germany.

    Cited by:

    1. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.

  5. Klinge Jacobsen, Henrik & Hansen, Lise-Lotte P & Schröder, Sascha T & Kitzing, Lena, 2012. "Cooperation mechanisms to achieve EU renewable targets," MPRA Paper 41400, University Library of Munich, Germany.

    Cited by:

    1. Natàlia Caldés & Pablo Del Río & Yolanda Lechón & Agime Gerbeti, 2018. "Renewable Energy Cooperation in Europe: What Next? Drivers and Barriers to the Use of Cooperation Mechanisms," Energies, MDPI, vol. 12(1), pages 1-22, December.
    2. Zeng, Lijun & Wang, Jiafeng & Zhao, Laijun, 2022. "An inter-provincial tradable green certificate futures trading model under renewable portfolio standard policy," Energy, Elsevier, vol. 257(C).
    3. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    4. Haruthai Chenboonthai & Tsunemi Watanabe, 2019. "Cooperation Intensity for Effective Policy Development and Implementation: A Case Study of Thailand’s Alternative Energy Development Plan," Energies, MDPI, vol. 12(13), pages 1-23, June.
    5. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul, 2015. "The political economy of renewable energy policies in Germany and the EU," UFZ Discussion Papers 12/2015, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    6. Knopf, Brigitte & Nahmmacher, Paul & Schmid, Eva, 2015. "The European renewable energy target for 2030 – An impact assessment of the electricity sector," Energy Policy, Elsevier, vol. 85(C), pages 50-60.
    7. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2018. "Policy convergence as a multifaceted concept: the case of renewable energy policies in the European Union," Journal of Public Policy, Cambridge University Press, vol. 38(3), pages 361-387, September.
    8. Herbes, Carsten & Rilling, Benedikt & MacDonald, Scott & Boutin, Nathalie & Bigerna, Simona, 2020. "Are voluntary markets effective in replacing state-led support for the expansion of renewables? – A comparative analysis of voluntary green electricity markets in the UK, Germany, France and Italy," Energy Policy, Elsevier, vol. 141(C).
    9. Papapostolou, Aikaterini & Karakosta, Charikleia & Nikas, Alexandros & Psarras, John, 2017. "Exploring opportunities and risks for RES-E deployment under Cooperation Mechanisms between EU and Western Balkans: A multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 519-530.
    10. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul, 2014. "Towards a general "Europeanization" of EU Member States' energy policies?," UFZ Discussion Papers 17/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    11. Strunz, Sebastian & Gawel, Erik & Lehmann, Paul & Söderholm, Patrik, 2015. "Policy convergence: A conceptual framework based on lessons from renewable energy policies in the EU," UFZ Discussion Papers 14/2015, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    12. Meus, Jelle & Van den Bergh, Kenneth & Delarue, Erik & Proost, Stef, 2019. "On international renewable cooperation mechanisms: The impact of national RES-E support schemes," Energy Economics, Elsevier, vol. 81(C), pages 859-873.
    13. Al-Mansour, Fouad & Sucic, Boris & Pusnik, Matevz, 2014. "Challenges and prospects of electricity production from renewable energy sources in Slovenia," Energy, Elsevier, vol. 77(C), pages 73-81.
    14. Gawel, Erik & Strunz, Sebastian & Lehmann, Paul, 2014. "Wie viel Europa braucht die Energiewende?," UFZ Discussion Papers 4/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    15. Natalia Sajnóg & Katarzyna Sobolewska-Mikulska & Justyna Wójcik-Leń, 2019. "Methodology of Determination of the Range of Restrictions Related to the Existence of Transmission Devices on Private Land—Case Study of Poland," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    16. Linnerud, Kristin & Holden, Erling, 2015. "Investment barriers under a renewable-electricity support scheme: Differences across investor types," Energy, Elsevier, vol. 87(C), pages 699-709.
    17. Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2016. "Renewable energy scenarios for costs reductions in the European Union," Renewable Energy, Elsevier, vol. 96(PA), pages 80-90.
    18. Renata Varfolomejeva & Antans Sauhats & Nikita Sokolovs & Hasan Coban, 2017. "The Influence of Small-Scale Power Plant Supporting Schemes on the Public Trader and Consumers," Energies, MDPI, vol. 10(6), pages 1-12, June.
    19. Aikaterini Papapostolou & Charikleia Karakosta & Georgios Apostolidis & Haris Doukas, 2020. "An AHP-SWOT-Fuzzy TOPSIS Approach for Achieving a Cross-Border RES Cooperation," Sustainability, MDPI, vol. 12(7), pages 1-28, April.
    20. Creutzig, Felix & Goldschmidt, Jan Christoph & Lehmann, Paul & Schmid, Eva & von Blücher, Felix & Breyer, Christian & Fernandez, Blanca & Jakob, Michael & Knopf, Brigitte & Lohrey, Steffen & Susca, Ti, 2014. "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1015-1028.
    21. Pang, Rui-Zhi & Deng, Zhong-Qi & Hu, Jin-li, 2015. "Clean energy use and total-factor efficiencies: An international comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1158-1171.
    22. Kang, Moon Jung & Hwang, Jongwoon, 2016. "Structural dynamics of innovation networks funded by the European Union in the context of systemic innovation of the renewable energy sector," Energy Policy, Elsevier, vol. 96(C), pages 471-490.

  6. Klinge Jacobsen, Henrik, 2007. "Energy intensities and the impact of high energy prices on producing and consuming sectors in Malaysia," MPRA Paper 42130, University Library of Munich, Germany.

    Cited by:

    1. Ho, Lip-Wah, 2016. "Wind energy in Malaysia: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 279-295.
    2. Zohreh Salimian & Marjan Kordbacheh & Mehdi Sadeghi Shahdani & Vahab Mokarizadeh, 2012. "Analyzing the Effects of the Iranian Energy Subsidy Reform Plan on Short-Run Marginal Generation Cost of Electricity Using Extended Input-Output Price Model," International Journal of Energy Economics and Policy, Econjournals, vol. 2(4), pages 250-262.
    3. Chatri, Fatemeh & Yahoo, Masoud & Othman, Jamal, 2018. "The economic effects of renewable energy expansion in the electricity sector: A CGE analysis for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 203-216.

  7. Klinge Jacobsen, Henrik & Birr-Pedersen, Katja & Wier, Mette, 2003. "Distributional implications of environmental taxation in Denmark," MPRA Paper 65673, University Library of Munich, Germany.

    Cited by:

    1. Brenner, Mark & Riddle, Matthew & Boyce, James K., 2007. "A Chinese sky trust?: Distributional impacts of carbon charges and revenue recycling in China," Energy Policy, Elsevier, vol. 35(3), pages 1771-1784, March.
    2. Nikodinoska, Dragana & Schröder, Carsten, 2016. "On the emissions–inequality and emissions–welfare trade-offs in energy taxation: Evidence on the German car fuels tax," Resource and Energy Economics, Elsevier, vol. 44(C), pages 206-233.
    3. Nikodinoska, Dragana & Schröder, Carsten, 2015. "On the emissions-inequality trade-off in energy taxation: Evidence on the German car fuel tax," Discussion Papers 2015/6, Free University Berlin, School of Business & Economics.
    4. Arief Anshory Yusuf & Budy P. Resosudarmo, 2007. "On the Distributional Effect of Carbon Tax in Developing Countries: The Case of Indonesia," Working Papers in Economics and Development Studies (WoPEDS) 200705, Department of Economics, Padjadjaran University, revised Aug 2007.
    5. Ohlendorf, Nils & Jacob, Michael & Minx, Jan Christoph & Schröder, Carsten & Steckel, Jan Christoph, 2020. "Distributional Impacts of Carbon Pricing: A Meta-Analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 78(1), pages 1-42.
    6. Nils Ohlendorf & Michael Jakob & Jan Christoph Minx & Carsten Schröder & Jan Christoph Steckel, 2018. "Distributional Impacts of Climate Mitigation Policies - a Meta-Analysis," Discussion Papers of DIW Berlin 1776, DIW Berlin, German Institute for Economic Research.
    7. Timilsina, Govinda R. & Dulal, Hari B., 2008. "Fiscal policy instruments for reducing congestion and atmospheric emissions in the transport sector : a review," Policy Research Working Paper Series 4652, The World Bank.
    8. European Commission, 2012. "Tax reforms in EU Member States - Tax policy challenges for economic growth and fiscal sustainability – 2012 Report," Taxation Papers 34, Directorate General Taxation and Customs Union, European Commission.
    9. You-Yi Guo & Jin-Xu Lin & Shih-Mo Lin, 2022. "The Distribution Effects of a Carbon Tax on Urban and Rural Households in China," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    10. Carl Gaigné & Lota Tamini, 2021. "Environmental Taxation and Import Demand for Environmental Goods: Theory and Evidence from the European Union," Post-Print hal-03280104, HAL.
    11. Matthew Riddle & James Boyce, 2007. "Cap and Dividend: How to Curb Global Warming while Protecting the Incomes of American Families," Working Papers wp150, Political Economy Research Institute, University of Massachusetts at Amherst.
    12. Heindl, Peter & Löschel, Andreas, 2015. "Social implications of green growth policies from the perspective of energy sector reform and its impact on households," ZEW Discussion Papers 15-012, ZEW - Leibniz Centre for European Economic Research.
    13. Winter, Simon & Schlesewsky, Lisa, 2019. "The German feed-in tariff revisited - an empirical investigation on its distributional effects," Energy Policy, Elsevier, vol. 132(C), pages 344-356.
    14. Peter Grösche & Carsten Schröder, 2014. "On the redistributive effects of Germany’s feed-in tariff," Empirical Economics, Springer, vol. 46(4), pages 1339-1383, June.
    15. Fiorenza Carraro & Andrea Zatti, 2012. "Decentralized environmental taxation: a preliminary assessment," Chapters, in: Larry Kreiser & Ana Yábar Sterling & Pedro Herrera & Janet E. Milne & Hope Ashiabor (ed.), Carbon Pricing, Growth and the Environment, chapter 3, pages 33-49, Edward Elgar Publishing.
    16. Andrea Zatti & Fiorenza Carraro, 2013. "Environmental taxation and municipal fiscal federalism: remarks and perspectives on the Italian case study," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2013(2), pages 61-92.
    17. Yu‐Bong Lai, 2018. "The Feasibility of the Double‐Dividend Hypothesis in a Democratic Economy," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(1), pages 211-241, January.
    18. James Boyce & Matthew Riddle & Mark D. Brenner, 2005. "A Chinese Sky Trust? Distributional Impacts of Carbon charges and Revenue Recycling in China," Working Papers wp_brenner_riddle_boyce, Political Economy Research Institute, University of Massachusetts at Amherst.
    19. Agostini, Claudio A. & Jiménez, Johanna, 2015. "The distributional incidence of the gasoline tax in Chile," Energy Policy, Elsevier, vol. 85(C), pages 243-252.
    20. Johne, Clara & Schröder, Enno & Ward, Hauke, 2023. "The distributional effects of a nitrogen tax: Evidence from Germany," Ecological Economics, Elsevier, vol. 208(C).
    21. Wier, Mette & Birr-Pedersen, Katja & Jacobsen, Henrik Klinge & Klok, Jacob, 2005. "Are CO2 taxes regressive? Evidence from the Danish experience," Ecological Economics, Elsevier, vol. 52(2), pages 239-251, January.
    22. Jiang, Zhujun & Shao, Shuai, 2014. "Distributional effects of a carbon tax on Chinese households: A case of Shanghai," Energy Policy, Elsevier, vol. 73(C), pages 269-277.
    23. Sodero, Stephanie, 2011. "Policy in motion: reassembling carbon pricing policy development in the personal transport sector in British Columbia," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1474-1481.
    24. Topcu, Mert & Tugcu, Can Tansel, 2020. "The impact of renewable energy consumption on income inequality: Evidence from developed countries," Renewable Energy, Elsevier, vol. 151(C), pages 1134-1140.

  8. Klinge Jacobsen, Henrik, 1999. "Taxing CO2 and subsidising biomass. Analysed in a macroeconomic and sectoral model," MPRA Paper 43495, University Library of Munich, Germany.

    Cited by:

    1. Alberto Gago & Xavier Labandeira & Xiral López Otero, 2014. "A Panorama on Energy Taxes and Green Tax Reforms," Hacienda Pública Española / Review of Public Economics, IEF, vol. 208(1), pages 145-190, March.

  9. Klinge Jacobsen, Henrik, 1999. "Export of energy technology: The case of Denmark," MPRA Paper 51796, University Library of Munich, Germany.

    Cited by:

    1. Dmitry Burakov, 2016. "Elasticity of Energy Intensity on a Regional Scale: An Empirical Study of International Trade Channel," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 65-75.

  10. Klinge Jacobsen, Henrik & Morthorst, Poul Erik & Nielsen, Lise & Stephensen, Peter, 1996. "Sammenkobling af makroøkonomiske og teknisk-økonomiske modeller for energisektoren. Hybris [Integration of bottom-up and top-down models for the energy system: A practical case for Denmark]," MPRA Paper 65676, University Library of Munich, Germany.

    Cited by:

    1. Jacobsen, Henrik Klinge, 2001. "Technological progress and long-term energy demand -- a survey of recent approaches and a Danish case," Energy Policy, Elsevier, vol. 29(2), pages 147-157, January.
    2. Klinge Jacobsen, Henrik, 1998. "Integrating the bottom-up and top-down approach to energy-economy modelling: the case of Denmark," Energy Economics, Elsevier, vol. 20(4), pages 443-461, September.
    3. Henrik Jacobsen, 2000. "Modelling a sector undergoing structural change: The case of Danish energy supply," Annals of Operations Research, Springer, vol. 97(1), pages 231-247, December.
    4. Klinge Jacobsen, Henrik, 1999. "Taxing CO2 and subsidising biomass. Analysed in a macroeconomic and sectoral model," MPRA Paper 43495, University Library of Munich, Germany.
    5. Henrik Klinge Jacobsen, 2000. "Technology Diffusion in Energy-Economy Models: The Case of Danish Vintage Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 43-71.

Articles

  1. Andersen, F.M. & Gunkel, P.A. & Jacobsen, H.K. & Kitzing, L., 2021. "Residential electricity consumption and household characteristics: An econometric analysis of Danish smart-meter data," Energy Economics, Elsevier, vol. 100(C).

    Cited by:

    1. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    2. Anders Rhiger Hansen & Daniel Leiria & Hicham Johra & Anna Marszal-Pomianowska, 2022. "Who Produces the Peaks? Household Variation in Peak Energy Demand for Space Heating and Domestic Hot Water," Energies, MDPI, vol. 15(24), pages 1-23, December.

  2. Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.

    Cited by:

    1. Majidi Nezhad, Meysam & Heydari, Azim & Neshat, Mehdi & Keynia, Farshid & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "A Mediterranean Sea Offshore Wind classification using MERRA-2 and machine learning models," Renewable Energy, Elsevier, vol. 190(C), pages 156-166.
    2. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    3. Ildar Daminov & Anne Blavette & Salvy Bourguet & H. Ben Ahmed & Thomas Soulard & Pierre Warlop, 2023. "Economic performance of an overplanted offshore wind farm under several commitment strategies and dynamic thermal ratings of submarine export cable," Post-Print hal-04183205, HAL.

  3. Kari-Anne Lyng & Lise Skovsgaard & Henrik Klinge Jacobsen & Ole Jørgen Hanssen, 2020. "The implications of economic instruments on biogas value chains: a case study comparison between Norway and Denmark," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7125-7152, December.

    Cited by:

    1. Kari-Anne Lyng & Mia Bjerkestrand & Aina Elstad Stensgård & Pieter Callewaert & Ole Jørgen Hanssen, 2018. "Optimising Anaerobic Digestion of Manure Resources at a Regional Level," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    2. Derick Lima & Gregory Appleby & Li Li, 2023. "A Scoping Review of Options for Increasing Biogas Production from Sewage Sludge: Challenges and Opportunities for Enhancing Energy Self-Sufficiency in Wastewater Treatment Plants," Energies, MDPI, vol. 16(5), pages 1-34, March.
    3. Diego Teixeira Michalovicz & Patricia Bilotta, 2023. "Impact of a methane emission tax on circular economy scenarios in small wastewater treatment plants," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6575-6589, July.
    4. Catalin Vrabie, 2021. "Converting Municipal Waste to Energy through the Biomass Chain, a Key Technology for Environmental Issues in (Smart) Cities," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    5. Takman, Johanna & Andersson-Sköld, Yvonne, 2021. "A framework for barriers, opportunities, and potential solutions for renewable energy diffusion: Exemplified by liquefied biogas for heavy trucks," Transport Policy, Elsevier, vol. 110(C), pages 150-160.
    6. Skovsgaard, Lise & Jensen, Ida Græsted, 2018. "Recent trends in biogas value chains explained using cooperative game theory," Energy Economics, Elsevier, vol. 74(C), pages 503-522.

  4. Hevia-Koch, Pablo & Klinge Jacobsen, Henrik, 2019. "Comparing offshore and onshore wind development considering acceptance costs," Energy Policy, Elsevier, vol. 125(C), pages 9-19.

    Cited by:

    1. Russell McKenna & Stefan Pfenninger & Heidi Heinrichs & Johannes Schmidt & Iain Staffell & Katharina Gruber & Andrea N. Hahmann & Malte Jansen & Michael Klingler & Natascha Landwehr & Xiaoli Guo Lars', 2021. "Reviewing methods and assumptions for high-resolution large-scale onshore wind energy potential assessments," Papers 2103.09781, arXiv.org.
    2. Ladenburg, Jacob & Skotte, Maria, 2022. "Heterogeneity in willingness to pay for the location of offshore wind power development: An application of the willingness to pay space model," Energy, Elsevier, vol. 241(C).
    3. Gea-Bermúdez, Juan & Pade, Lise-Lotte & Koivisto, Matti Juhani & Ravn, Hans, 2020. "Optimal generation and transmission development of the North Sea region: Impact of grid architecture and planning horizon," Energy, Elsevier, vol. 191(C).
    4. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2021. "Optimal siting of onshore wind turbines: Local disamenities matter," UFZ Discussion Papers 4/2021, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. José Baptista & Beatriz Jesus & Adelaide Cerveira & Eduardo J. Solteiro Pires, 2023. "Offshore Wind Farm Layout Optimisation Considering Wake Effect and Power Losses," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    6. Anna Dóra Sæþórsdóttir & Margrét Wendt & Edita Tverijonaite, 2021. "Wealth of Wind and Visitors: Tourist Industry Attitudes towards Wind Energy Development in Iceland," Land, MDPI, vol. 10(7), pages 1-19, June.
    7. Attallah, Omneya & Ibrahim, Rania A. & Zakzouk, Nahla E., 2023. "CAD system for inter-turn fault diagnosis of offshore wind turbines via multi-CNNs & feature selection," Renewable Energy, Elsevier, vol. 203(C), pages 870-880.
    8. McKenna, Russell & Pfenninger, Stefan & Heinrichs, Heidi & Schmidt, Johannes & Staffell, Iain & Bauer, Christian & Gruber, Katharina & Hahmann, Andrea N. & Jansen, Malte & Klingler, Michael & Landwehr, 2022. "High-resolution large-scale onshore wind energy assessments: A review of potential definitions, methodologies and future research needs," Renewable Energy, Elsevier, vol. 182(C), pages 659-684.
    9. Pablo Zambrana & Javier Fernandez-Quijano & J. Jesus Fernandez-Lozano & Pedro M. Mayorga Rubio & Alfonso J. Garcia-Cerezo, 2021. "Improving the Performance of Controllers for Wind Turbines on Semi-Submersible Offshore Platforms: Fuzzy Supervisor Control," Energies, MDPI, vol. 14(19), pages 1-17, September.
    10. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    11. Lehmann, Paul & Reutter, Felix & Tafarte, Philip, 2023. "Optimal siting of onshore wind turbines: Local disamenities matter," Resource and Energy Economics, Elsevier, vol. 74(C).
    12. Shen, Wei & Chen, Xi & Qiu, Jing & Hayward, Jennifier A & Sayeef, Saad & Osman, Peter & Meng, Ke & Dong, Zhao Yang, 2020. "A comprehensive review of variable renewable energy levelized cost of electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    13. Donk, Peter & Sterl, Sebastian & Thiery, Wim & Willems, Patrick, 2021. "REVUB-Light: A parsimonious model to assess power system balancing and flexibility for optimal intermittent renewable energy integration – A study of Suriname," Renewable Energy, Elsevier, vol. 173(C), pages 57-75.
    14. Kamila Pronińska & Krzysztof Księżopolski, 2021. "Baltic Offshore Wind Energy Development—Poland’s Public Policy Tools Analysis and the Geostrategic Implications," Energies, MDPI, vol. 14(16), pages 1-17, August.
    15. Dibaj, Ali & Gao, Zhen & Nejad, Amir R., 2023. "Fault detection of offshore wind turbine drivetrains in different environmental conditions through optimal selection of vibration measurements," Renewable Energy, Elsevier, vol. 203(C), pages 161-176.
    16. Ladenburg, Jacob & Hevia-Koch, Pablo & Petrović, Stefan & Knapp, Lauren, 2020. "The offshore-onshore conundrum: Preferences for wind energy considering spatial data in Denmark," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    17. Qiu, Yue & Zhou, Suyang & Wang, Jihua & Chou, Jun & Fang, Yunhui & Pan, Guangsheng & Gu, Wei, 2020. "Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China," Applied Energy, Elsevier, vol. 269(C).
    18. Soares-Ramos, Emanuel P.P. & de Oliveira-Assis, Lais & Sarrias-Mena, Raúl & Fernández-Ramírez, Luis M., 2020. "Current status and future trends of offshore wind power in Europe," Energy, Elsevier, vol. 202(C).
    19. J Charles Rajesh Kumar & D Vinod Kumar & D Baskar & B Mary Arunsi & R Jenova & MA Majid, 2021. "Offshore wind energy status, challenges, opportunities, environmental impacts, occupational health, and safety management in India," Energy & Environment, , vol. 32(4), pages 565-603, June.
    20. Maassen Maria Alexandra, 2023. "Project Management in the Wind Energy Field. Case Study: Evaluation of Wind Energy Projects through the Net Present Value," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 17(1), pages 80-88, July.
    21. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
    22. Panagiotis Korkos & Jaakko Kleemola & Matti Linjama & Arto Lehtovaara, 2022. "Representation Learning for Detecting the Faults in a Wind Turbine Hydraulic Pitch System Using Deep Learning," Energies, MDPI, vol. 15(24), pages 1-17, December.
    23. Dawid Augustyn & Martin D. Ulriksen & John D. Sørensen, 2021. "Reliability Updating of Offshore Wind Substructures by Use of Digital Twin Information," Energies, MDPI, vol. 14(18), pages 1-23, September.

  5. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.

    Cited by:

    1. Stürmer, Bernhard & Novakovits, Philipp & Luidolt, Alexander & Zweiler, Richard, 2019. "Potential of renewable methane by anaerobic digestion from existing plant stock – An economic reflection of an Austrian region," Renewable Energy, Elsevier, vol. 130(C), pages 920-929.
    2. Díaz-Trujillo, Luis Alberto & Nápoles-Rivera, Fabricio, 2019. "Optimization of biogas supply chain in Mexico considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 139(C), pages 1227-1240.
    3. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    4. Giorgio Provolo & Gabriele Mattachini & Alberto Finzi & Martina Cattaneo & Viviana Guido & Elisabetta Riva, 2018. "Global Warming and Acidification Potential Assessment of a Collective Manure Management System for Bioenergy Production and Nitrogen Removal in Northern Italy," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    5. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    6. Andreas Eder & Bernhard Mahlberg & Bernhard Stürmer, 2021. "Measuring and explaining productivity growth of renewable energy producers: An empirical study of Austrian biogas plants," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 48(1), pages 37-63, February.
    7. Demichelis, Francesca & Fiore, Silvia & Pleissner, Daniel & Venus, Joachim, 2018. "Technical and economic assessment of food waste valorization through a biorefinery chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 38-48.
    8. Benavidez, Justin R. & Thayer, Anastasia W. & Anderson, David P., 2019. "Poo Power: Revisiting Biogas Generation Potential on Dairy Farms in Texas," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 51(4), pages 682-700, November.
    9. Camila Agner D’Aquino & Bruno Alves Pereira & Tulio Ferreira Sawatani & Samantha Coelho de Moura & Alice Tagima & Júlia Carolina Bevervanso Borba Ferrarese & Samantha Christine Santos & Ildo Luis Saue, 2022. "Biogas Potential from Slums as a Sustainable and Resilient Route for Renewable Energy Diffusion in Urban Areas and Organic Waste Management in Vulnerable Communities in São Paulo," Sustainability, MDPI, vol. 14(12), pages 1-10, June.
    10. Mauler, Lukas & Duffner, Fabian & Leker, Jens, 2021. "Economies of scale in battery cell manufacturing: The impact of material and process innovations," Applied Energy, Elsevier, vol. 286(C).
    11. Zemo, Kahsay Haile & Termansen, Mette, 2018. "Farmers’ willingness to participate in collective biogas investment: A discrete choice experiment study," Resource and Energy Economics, Elsevier, vol. 52(C), pages 87-101.
    12. Velásquez Piñas, Jean Agustin & Venturini, Osvaldo José & Silva Lora, Electo Eduardo & del Olmo, Oscar Almazan & Calle Roalcaba, Orly Denisse, 2019. "An economic holistic feasibility assessment of centralized and decentralized biogas plants with mono-digestion and co-digestion systems," Renewable Energy, Elsevier, vol. 139(C), pages 40-51.
    13. Shane, Agabu & Gheewala, Shabbir H. & Phiri, Seveliano, 2017. "Rural domestic biogas supply model for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 683-697.
    14. Jan K. Kazak & Joanna A. Kamińska & Rafał Madej & Marta Bochenkiewicz, 2020. "Where Renewable Energy Sources Funds are Invested? Spatial Analysis of Energy Production Potential and Public Support," Energies, MDPI, vol. 13(21), pages 1-26, October.
    15. Kari-Anne Lyng & Lise Skovsgaard & Henrik Klinge Jacobsen & Ole Jørgen Hanssen, 2020. "The implications of economic instruments on biogas value chains: a case study comparison between Norway and Denmark," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(8), pages 7125-7152, December.
    16. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    17. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Jensen, Ida Græsted & Skovsgaard, Lise, 2017. "The impact of CO2-costs on biogas usage," Energy, Elsevier, vol. 134(C), pages 289-300.
    19. Hengeveld, E.J. & Bekkering, J. & Van Dael, M. & van Gemert, W.J.T. & Broekhuis, A.A., 2020. "Potential advantages in heat and power production when biogas is collected from several digesters using dedicated pipelines - A case study in the “Province of West-Flanders” (Belgium)," Renewable Energy, Elsevier, vol. 149(C), pages 549-564.
    20. Eder, Andreas, 2017. "Cost efficiency and economies of diversification of biogas-fuelled cogeneration plants in Austria: a nonparametric approach," MPRA Paper 80369, University Library of Munich, Germany.
    21. Laura Dardot Campello & Regina Mambeli Barros & Geraldo Lúcio Tiago Filho & Ivan Felipe Silva Santos, 2021. "Analysis of the economic viability of the use of biogas produced in wastewater treatment plants to generate electrical energy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 2614-2629, February.
    22. Yiyun Liu & Jun Wu & Jianjun Li & Jingjing Huang, 2023. "The Diffusion Rule of Demand-Oriented Biogas Supply in Distributed Renewable Energy System: An Evolutionary Game-Based Approach," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    23. Andreas Eder & Bernhard Mahlberg, 2018. "Size, Subsidies and Technical Efficiency in Renewable Energy Production: The Case of Austrian Biogas Plants," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    24. Siegrist, Armin & Bowman, Gillianne & Burg, Vanessa, 2022. "Energy generation potentials from agricultural residues: The influence of techno-spatial restrictions on biomethane, electricity, and heat production," Applied Energy, Elsevier, vol. 327(C).
    25. Skovsgaard, Lise & Jensen, Ida Græsted, 2018. "Recent trends in biogas value chains explained using cooperative game theory," Energy Economics, Elsevier, vol. 74(C), pages 503-522.
    26. Venturini, Giada & Pizarro-Alonso, Amalia & Münster, Marie, 2019. "How to maximise the value of residual biomass resources: The case of straw in Denmark," Applied Energy, Elsevier, vol. 250(C), pages 369-388.
    27. Raquel Iglesias & Raúl Muñoz & María Polanco & Israel Díaz & Ana Susmozas & Antonio D. Moreno & María Guirado & Nely Carreras & Mercedes Ballesteros, 2021. "Biogas from Anaerobic Digestion as an Energy Vector: Current Upgrading Development," Energies, MDPI, vol. 14(10), pages 1-30, May.
    28. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    29. De Clercq, Djavan & Wen, Zongguo & Caicedo, Luis & Cao, Xin & Fan, Fei & Xu, Ruifei, 2017. "Application of DEA and statistical inference to model the determinants of biomethane production efficiency: A case study in south China," Applied Energy, Elsevier, vol. 205(C), pages 1231-1243.
    30. Eder, Andreas, 2018. "Measuring and decomposing economies of diversification: An application to biogas-fuelled cogeneration plants in Austria," International Journal of Production Economics, Elsevier, vol. 204(C), pages 421-432.

  6. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.

    Cited by:

    1. Lott, Melissa C. & Pye, Steve & Dodds, Paul E., 2017. "Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom," Energy Policy, Elsevier, vol. 101(C), pages 42-51.
    2. Hansen, Kenneth & Connolly, David & Lund, Henrik & Drysdale, David & Thellufsen, Jakob Zinck, 2016. "Heat Roadmap Europe: Identifying the balance between saving heat and supplying heat," Energy, Elsevier, vol. 115(P3), pages 1663-1671.
    3. Pasquali, Andrea & Klinge Jacobsen, Henrik, 2019. "Construction of energy savings cost curves: An application for Denmark," MPRA Paper 93076, University Library of Munich, Germany.
    4. Ziemele, Jelena & Gravelsins, Armands & Blumberga, Andra & Blumberga, Dagnija, 2017. "Combining energy efficiency at source and at consumer to reach 4th generation district heating: Economic and system dynamics analysis," Energy, Elsevier, vol. 137(C), pages 595-606.
    5. Blanco, Herib & Codina, Victor & Laurent, Alexis & Nijs, Wouter & Maréchal, François & Faaij, André, 2020. "Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU," Applied Energy, Elsevier, vol. 259(C).
    6. Birgit A. Henrich & Thomas Hoppe & Devin Diran & Zofia Lukszo, 2021. "The Use of Energy Models in Local Heating Transition Decision Making: Insights from Ten Municipalities in The Netherlands," Energies, MDPI, vol. 14(2), pages 1-23, January.

  7. Klinge Jacobsen, Henrik & Pade, Lise Lotte & Schröder, Sascha Thorsten & Kitzing, Lena, 2014. "Cooperation mechanisms to achieve EU renewable targets," Renewable Energy, Elsevier, vol. 63(C), pages 345-352.
    See citations under working paper version above.
  8. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.

    Cited by:

    1. Yekui Chang & Rao Liu & Yu Ba & Weidong Li, 2018. "A New Control Logic for a Wind-Area on the Balancing Authority Area Control Error Limit Standard for Load Frequency Control," Energies, MDPI, vol. 11(1), pages 1-20, January.
    2. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    3. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    4. Christoph Wolter & Henrik Klinge Jacobsen & Lorenzo Zeni & Georgios Rogdakis & Nicolaos A. Cutululis, 2020. "Overplanting in offshore wind power plants in different regulatory regimes," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(3), May.
    5. Morales-España, Germán & Nycander, Elis & Sijm, Jos, 2021. "Reducing CO2 emissions by curtailing renewables: Examples from optimal power system operation," Energy Economics, Elsevier, vol. 99(C).
    6. Hadush, Samson Yemane & Meeus, Leonardo, 2018. "DSO-TSO cooperation issues and solutions for distribution grid congestion management," Energy Policy, Elsevier, vol. 120(C), pages 610-621.
    7. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.
    8. Klinge Jacobsen, Henrik & Pade, Lise Lotte & Schröder, Sascha Thorsten & Kitzing, Lena, 2014. "Cooperation mechanisms to achieve EU renewable targets," Renewable Energy, Elsevier, vol. 63(C), pages 345-352.
    9. Kubik, M.L. & Coker, P.J. & Barlow, J.F., 2015. "Increasing thermal plant flexibility in a high renewables power system," Applied Energy, Elsevier, vol. 154(C), pages 102-111.
    10. Oyewo, Ayobami Solomon & Aghahosseini, Arman & Ram, Manish & Breyer, Christian, 2020. "Transition towards decarbonised power systems and its socio-economic impacts in West Africa," Renewable Energy, Elsevier, vol. 154(C), pages 1092-1112.
    11. Anne Held & Tobias Boßmann & Mario Ragwitz & Pablo del Río & Luis Janeiro & Sonja Förster, 2017. "Challenges and appropriate policy portfolios for (almost) mature renewable electricity technologies," Energy & Environment, , vol. 28(1-2), pages 34-53, March.
    12. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2021. "Imbalance mitigation strategy via flexible PV ancillary services: The Italian case study," Renewable Energy, Elsevier, vol. 179(C), pages 1694-1705.
    13. Wu, Yunna & Zhang, Ting, 2021. "Risk assessment of offshore wave-wind-solar-compressed air energy storage power plant through fuzzy comprehensive evaluation model," Energy, Elsevier, vol. 223(C).
    14. Dato, Prudence & Durmaz, Tunç & Pommeret, Aude, 2020. "Smart grids and renewable electricity generation by households," Energy Economics, Elsevier, vol. 86(C).
    15. Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
    16. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    17. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    18. Veeraya Imcharoenkul & Surachai Chaitusaney, 2021. "Optimal Variable Renewable Energy Generation Schedules Considering Market Prices and System Operational Constraints," Energies, MDPI, vol. 14(17), pages 1-18, August.
    19. Ehrlich, Lars G. & Klamka, Jonas & Wolf, André, 2015. "The potential of decentralized power-to-heat as a flexibility option for the german electricity system: A microeconomic perspective," Energy Policy, Elsevier, vol. 87(C), pages 417-428.
    20. Simshauser, P. & Newbery, D., 2023. "Non-Firm vs. Priority Access: on the Long Run Average and Marginal Cost of Renewables in Australia," Cambridge Working Papers in Economics 2363, Faculty of Economics, University of Cambridge.
    21. Marco Badami & Gabriele Fambri & Salvatore Mancò & Mariapia Martino & Ioannis G. Damousis & Dimitrios Agtzidis & Dimitrios Tzovaras, 2019. "A Decision Support System Tool to Manage the Flexibility in Renewable Energy-Based Power Systems," Energies, MDPI, vol. 13(1), pages 1-16, December.
    22. Li, Jianglong & Ho, Mun Sing & Xie, Chunping & Stern, Nicholas, 2022. "China's flexibility challenge in achieving carbon neutrality by 2060," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    23. Klaus Skytte & Lucien Bobo, 2019. "Increasing the value of wind: From passive to active actors in multiple power markets," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    24. Grimm, Veronika & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2021. "The impact of market design on transmission and generation investment in electricity markets," Energy Economics, Elsevier, vol. 93(C).
    25. Erik Gawel & Alexandra Purkus & Klaas Korte & Paul Lehmann, 2013. "Förderung der Markt- und Systemintegration erneuerbarer Energien: Perspektiven einer instrumentellen Weiterentwicklung," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 82(3), pages 123-136.
    26. Hayn, Marian & Bertsch, Valentin & Zander, Anne & Nickel, Stefan & Fichtner, Wolf, 2016. "The impact of electricity tariffs on residential demand side flexibility," Working Paper Series in Production and Energy 14, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    27. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
    28. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    29. Prudence Dato & Tun Durmaz & Aude Pommeret, 2017. "Intermittent renewable electricity generation with smart grids," Working Papers 2017.09, FAERE - French Association of Environmental and Resource Economists.
    30. Sandano, Roberto & Farrell, Michael & Basu, Malabika, 2017. "Enhanced master/slave control strategy enabling grid support services and offshore wind power dispatch in a multi-terminal VSC HVDC transmission system," Renewable Energy, Elsevier, vol. 113(C), pages 1580-1588.
    31. Al-Maamary, Hilal M.S. & Kazem, Hussein A. & Chaichan, Miqdam T., 2017. "The impact of oil price fluctuations on common renewable energies in GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 989-1007.
    32. Maaike Braat & Odysseas Tsafarakis & Ioannis Lampropoulos & Joris Besseling & Wilfried G. J. H. M. van Sark, 2021. "Cost-Effective Increase of Photovoltaic Electricity Feed-In on Congested Transmission Lines: A Case Study of The Netherlands," Energies, MDPI, vol. 14(10), pages 1-21, May.
    33. Wu, Xiaomin & Cao, Weihua & Wang, Dianhong & Ding, Min & Yu, Liangjun & Nakanishi, Yosuke, 2021. "Demand response model based on improved Pareto optimum considering seasonal electricity prices for Dongfushan Island," Renewable Energy, Elsevier, vol. 164(C), pages 926-936.
    34. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    35. Drew, Daniel R. & Coker, Phil J. & Bloomfield, Hannah C. & Brayshaw, David J. & Barlow, Janet F. & Richards, Andrew, 2019. "Sunny windy sundays," Renewable Energy, Elsevier, vol. 138(C), pages 870-875.
    36. Liyang Han & Thomas Morstyn & Malcolm McCulloch, 2019. "Estimation of the Shapley Value of a Peer-to-Peer Energy Sharing Game using Coalitional Stratified Random Sampling," Papers 1903.11047, arXiv.org.
    37. Gatzert, Nadine & Kosub, Thomas, 2016. "Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 982-998.
    38. Antweiler, Werner, 2017. "A two-part feed-in-tariff for intermittent electricity generation," Energy Economics, Elsevier, vol. 65(C), pages 458-470.
    39. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    40. Lei, Xuanang & Lin, Yujun & Yang, Qiufan & Zhou, Jianyu & Chen, Xia & Wen, Jinyu, 2022. "Research on coordinated control of renewable-energy-based Heat-Power station system," Applied Energy, Elsevier, vol. 324(C).
    41. Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
    42. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.
    43. O'Shaughnessy, Eric & Heeter, Jenny & Shah, Chandra & Koebrich, Sam, 2021. "Corporate acceleration of the renewable energy transition and implications for electric grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    44. Gatzert, Nadine & Vogl, Nikolai, 2016. "Evaluating investments in renewable energy under policy risks," Energy Policy, Elsevier, vol. 95(C), pages 238-252.
    45. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes—A case study of the German market premium," Energy Policy, Elsevier, vol. 61(C), pages 599-609.

  9. Ropenus, Stephanie & Jacobsen, Henrik Klinge & Schröder, Sascha Thorsten, 2011. "Network regulation and support schemes – How policy interactions affect the integration of distributed generation," Renewable Energy, Elsevier, vol. 36(7), pages 1949-1956.

    Cited by:

    1. Guillermo Ivan Pereira & Patrícia Pereira Silva & Deborah Soule, 2018. "Policy-adaptation for a smarter and more sustainable EU electricity distribution industry: a foresight analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 231-267, December.
    2. Ruiz-Romero, Salvador & Colmenar-Santos, Antonio & Gil-Ortego, Rosario & Molina-Bonilla, Antonio, 2013. "Distributed generation: The definitive boost for renewable energy in Spain," Renewable Energy, Elsevier, vol. 53(C), pages 354-364.
    3. Klinge Jacobsen, Henrik & Pade, Lise Lotte & Schröder, Sascha Thorsten & Kitzing, Lena, 2014. "Cooperation mechanisms to achieve EU renewable targets," Renewable Energy, Elsevier, vol. 63(C), pages 345-352.
    4. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Current utilization of microturbines as a part of a hybrid system in distributed generation technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 142-152.
    5. Gottschamer, L. & Zhang, Q., 2016. "Interactions of factors impacting implementation and sustainability of renewable energy sourced electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 164-174.
    6. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2021. "Assessing the influence of legal constraints on the integration of renewable energy technologies in polygeneration systems for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    7. Fatih Cemil Ozbugday & Onder Ozgur, 2018. "Advanced Metering Infrastructure and Distributed Generation: Panel Causality Evidence from New Zealand," International Journal of Energy Economics and Policy, Econjournals, vol. 8(5), pages 125-137.
    8. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    9. Shaukat, N. & Khan, B. & Ali, S.M. & Mehmood, C.A. & Khan, J. & Farid, U. & Majid, M. & Anwar, S.M. & Jawad, M. & Ullah, Z., 2018. "A survey on electric vehicle transportation within smart grid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1329-1349.
    10. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2014. "Comparison of linear, mixed integer and non-linear programming methods in energy system dispatch modelling," Energy, Elsevier, vol. 74(C), pages 109-118.
    11. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    12. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    13. Spyridaki, N.-A. & Flamos, A., 2014. "A paper trail of evaluation approaches to energy and climate policy interactions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1090-1107.
    14. Buchmann, Marius, 2017. "Governance of data and information management in smart distribution grids: Increase efficiency by balancing coordination and competition," Utilities Policy, Elsevier, vol. 44(C), pages 63-72.
    15. Matschoss, Patrick & Bayer, Benjamin & Thomas, Heiko & Marian, Adela, 2019. "The German incentive regulation and its practical impact on the grid integration of renewable energy systems," Renewable Energy, Elsevier, vol. 134(C), pages 727-738.
    16. Marius Buchmann, 2019. "How decentralization drives a change of the institutional framework on the distribution grid level in the electricity sector – the case of local congestion markets," Bremen Energy Working Papers 0031, Bremen Energy Research.
    17. Marius Buchmann, 2016. "Information Management in Smart Grids - Who Should Govern Information Management to Balance Between Coordination and Competition on the Distribution Grid Level?," Bremen Energy Working Papers 0022, Bremen Energy Research.
    18. Passey, Robert & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2017. "Designing more cost reflective electricity network tariffs with demand charges," Energy Policy, Elsevier, vol. 109(C), pages 642-649.
    19. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    20. Wolsink, Maarten, 2020. "Distributed energy systems as common goods: Socio-political acceptance of renewables in intelligent microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    21. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.
    22. Dong, Jun & Feng, Tian-tian & Sun, Hong-xing & Cai, Hong-xin & Li, Rong & Yang, Yisheng, 2016. "Clean distributed generation in China: Policy options and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 753-764.

  10. Klinge Jacobsen, Henrik & Zvingilaite, Erika, 2010. "Reducing the market impact of large shares of intermittent energy in Denmark," Energy Policy, Elsevier, vol. 38(7), pages 3403-3413, July.

    Cited by:

    1. John Dorrell & Keunjae Lee, 2020. "The Cost of Wind: Negative Economic Effects of Global Wind Energy Development," Energies, MDPI, vol. 13(14), pages 1-25, July.
    2. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan H., 2014. "Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering," Energy Policy, Elsevier, vol. 67(C), pages 290-300.
    3. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    4. Hartner, Michael & Permoser, Andreas, 2018. "Through the valley: The impact of PV penetration levels on price volatility and resulting revenues for storage plants," Renewable Energy, Elsevier, vol. 115(C), pages 1184-1195.
    5. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    6. Chi-Keung Woo, Ira Horowitz, Brian Horii, Ren Orans, and Jay Zarnikau, 2012. "Blowing in the Wind: Vanishing Payoffs of a Tolling Agreement for Natural-gas-fired Generation of Electricity in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    7. Zarnikau, J. & Tsai, C.H. & Woo, C.K., 2020. "Determinants of the wholesale prices of energy and ancillary services in the U.S. Midcontinent electricity market," Energy, Elsevier, vol. 195(C).
    8. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    9. Olukunle O. Owolabi & Toryn L. J. Schafer & Georgia E. Smits & Sanhita Sengupta & Sean E. Ryan & Lan Wang & David S. Matteson & Mila Getmansky Sherman & Deborah A. Sunter, 2021. "Role of Variable Renewable Energy Penetration on Electricity Price and its Volatility Across Independent System Operators in the United States," Papers 2112.11338, arXiv.org, revised Nov 2022.
    10. Heesun Jang, 2020. "Market Impacts of a Transmission Investment: Evidence from the ERCOT Competitive Renewable Energy Zones Project," Energies, MDPI, vol. 13(12), pages 1-16, June.
    11. de Menezes, Lilian M. & Houllier, Melanie A., 2015. "Germany's nuclear power plant closures and the integration of electricity markets in Europe," Energy Policy, Elsevier, vol. 85(C), pages 357-368.
    12. Mou, Dunguo & Wang, Zining, 2022. "A systematic analysis of integrating variable wind power into Fujian power grid," Energy Policy, Elsevier, vol. 170(C).
    13. Forrest, Sam & MacGill, Iain, 2013. "Assessing the impact of wind generation on wholesale prices and generator dispatch in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 120-132.
    14. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Energy, Elsevier, vol. 77(C), pages 414-421.
    15. Alahäivälä, Antti & Heß, Tobias & Cao, Sunliang & Lehtonen, Matti, 2015. "Analyzing the optimal coordination of a residential micro-CHP system with a power sink," Applied Energy, Elsevier, vol. 149(C), pages 326-337.
    16. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    17. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    18. Woo, C.K. & Moore, J. & Schneiderman, B. & Ho, T. & Olson, A. & Alagappan, L. & Chawla, K. & Toyama, N. & Zarnikau, J., 2016. "Merit-order effects of renewable energy and price divergence in California’s day-ahead and real-time electricity markets," Energy Policy, Elsevier, vol. 92(C), pages 299-312.
    19. Chi-Keung Woo, Ira Horowitz, Jay Zarnikau, Jack Moore, Brendan Schneiderman, Tony Ho, and Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    20. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).
    21. John Dorrell & Keunjae Lee, 2021. "The Price of Wind: An Empirical Analysis of the Relationship between Wind Energy and Electricity Price across the Residential, Commercial, and Industrial Sectors," Energies, MDPI, vol. 14(12), pages 1-21, June.
    22. Simoglou, Christos K. & Bakirtzis, Emmanouil A. & Biskas, Pandelis N. & Bakirtzis, Anastasios G., 2016. "Optimal operation of insular electricity grids under high RES penetration," Renewable Energy, Elsevier, vol. 86(C), pages 1308-1316.
    23. Narbel, Patrick A., 2014. "Rethinking how to support intermittent renewables," Discussion Papers 2014/17, Norwegian School of Economics, Department of Business and Management Science.
    24. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    25. Schaber, Katrin & Steinke, Florian & Hamacher, Thomas, 2012. "Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where?," Energy Policy, Elsevier, vol. 43(C), pages 123-135.
    26. Newbery, David, 2021. "National Energy and Climate Plans for the island of Ireland: wind curtailment, interconnectors and storage," Energy Policy, Elsevier, vol. 158(C).
    27. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    28. Zarnikau, J. & Woo, C.K. & Zhu, S. & Tsai, C.H., 2019. "Market price behavior of wholesale electricity products: Texas," Energy Policy, Elsevier, vol. 125(C), pages 418-428.
    29. Mehtap Kilic & Elisa Trujillo-Baute, 2014. "The stabilizing effect of hydro reservoir levels on intraday power prices under wind forecast errors," Working Papers 2014/30, Institut d'Economia de Barcelona (IEB).
    30. Brian Rivard and Adonis Yatchew, 2016. "Integration of Renewables into the Ontario Electricity System," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    31. Janina Ketterer, 2012. "The Impact of Wind Power Generation on the Electricity Price in Germany," ifo Working Paper Series 143, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    32. Sousa, Jorge A.M. & Teixeira, Fábio & Faias, Sérgio, 2014. "Impact of a price-maker pumped storage hydro unit on the integration of wind energy in power systems," Energy, Elsevier, vol. 69(C), pages 3-11.
    33. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    34. Grohnheit, Poul Erik & Sneum, Daniel Møller, 2023. "Calm before the storm: Market prices in a power market with an increasing share of wind power," Energy Policy, Elsevier, vol. 179(C).
    35. Grohnheit, Poul Erik & Andersen, Frits Møller & Larsen, Helge V., 2011. "Area price and demand response in a market with 25% wind power," Energy Policy, Elsevier, vol. 39(12), pages 8051-8061.
    36. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2017. "An Electricity Price Modeling Framework for Renewable-Dominant Markets," Working Paper Series in Production and Energy 23, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    37. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    38. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    39. António Cardoso Marques & José Alberto Fuinhas & Agostinho Pereira, 2015. "On the Dynamics of Generating Electricity from Diversified Sources: Evidence from Portugal," Energy & Environment, , vol. 26(4), pages 587-600, August.
    40. Diego Aineto & Javier Iranzo-Sánchez & Lenin G. Lemus-Zúñiga & Eva Onaindia & Javier F. Urchueguía, 2019. "On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market," Energies, MDPI, vol. 12(11), pages 1-20, May.
    41. Lilian de Menezes & Melanie A. Houllier, 2013. "Modelling Germany´s Energy Transition and its Potential Effect on European Electricity Spot Markets," EcoMod2013 5395, EcoMod.
    42. Zarnikau, J. & Zhu, S. & Woo, C.K. & Tsai, C.H., 2020. "Texas's operating reserve demand curve's generation investment incentive," Energy Policy, Elsevier, vol. 137(C).
    43. Cao, K.H. & Qi, H.S. & Tsai, C.H. & Woo, C.K. & Zarnikau, J., 2021. "Energy trading efficiency in the US Midcontinent electricity markets," Applied Energy, Elsevier, vol. 302(C).
    44. Faber, Hugo, 2023. "How does falling incumbent profitability affect energy policy discourse? The discursive construction of nuclear phaseouts and insufficient capacity as a threat in Sweden," Energy Policy, Elsevier, vol. 174(C).
    45. Sorknæs, Peter & Lund, Henrik & Andersen, Anders N., 2015. "Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants," Applied Energy, Elsevier, vol. 144(C), pages 129-138.
    46. Blarke, Morten B. & Dotzauer, Erik, 2011. "Intermittency-friendly and high-efficiency cogeneration: Operational optimisation of cogeneration with compression heat pump, flue gas heat recovery, and intermediate cold storage," Energy, Elsevier, vol. 36(12), pages 6867-6878.
    47. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    48. Abban, Abdul Rashid & Hasan, Mohammad Z., 2021. "Solar energy penetration and volatility transmission to electricity markets—An Australian perspective," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 434-449.
    49. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.
    50. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.
    51. Simoglou, Christos K. & Biskas, Pandelis N. & Vagropoulos, Stylianos I. & Bakirtzis, Anastasios G., 2014. "Electricity market models and RES integration: The Greek case," Energy Policy, Elsevier, vol. 67(C), pages 531-542.
    52. Hain, Martin & Kargus, Tobias & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2022. "An electricity price modeling framework for renewable-dominant markets," Working Paper Series in Production and Energy 66, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).

  11. Henrik Jacobsen, 2009. "Energy intensities and the impact of high energy prices on producing and consuming sectors in Malaysia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 11(1), pages 137-160, February.
    See citations under working paper version above.
  12. Klinge Jacobsen, Henrik & Fristrup, Peter & Munksgaard, Jesper, 2006. "Integrated energy markets and varying degrees of liberalisation: Price links, bundled sales and CHP production exemplified by Northern European experiences," Energy Policy, Elsevier, vol. 34(18), pages 3527-3537, December.

    Cited by:

    1. Laurent Granier & Marion Podesta, 2010. "Bundling and Mergers in Energy Markets," Post-Print hal-00955456, HAL.
    2. Simone Di Leo & Marta Chicca & Cinzia Daraio & Andrea Guerrini & Stefano Scarcella, 2022. "A Framework for the Analysis of the Sustainability of the Energy Retail Market," Sustainability, MDPI, vol. 14(12), pages 1-28, June.
    3. Gong, Binlei, 2018. "Different behaviors in natural gas production between national and private oil companies: Economics-driven or environment-driven?," Energy Policy, Elsevier, vol. 114(C), pages 145-152.
    4. Kishimoto, Jo & Goto, Mika & Inoue, Kotaro, 2017. "Do acquisitions by electric utility companies create value? Evidence from deregulated markets," Energy Policy, Elsevier, vol. 105(C), pages 212-224.
    5. Amoiralis, Eleftherios I. & Andriosopoulos, Kostas, 2017. "Challenges for a compliance officer in the liberalized EU energy market: A case study on the Greek gas transmission system operator," Energy Policy, Elsevier, vol. 110(C), pages 117-125.
    6. Domanico, Fabio, 2007. "Concentration in the European electricity industry: The internal market as solution?," Energy Policy, Elsevier, vol. 35(10), pages 5064-5076, October.

  13. Wier, Mette & Birr-Pedersen, Katja & Jacobsen, Henrik Klinge & Klok, Jacob, 2005. "Are CO2 taxes regressive? Evidence from the Danish experience," Ecological Economics, Elsevier, vol. 52(2), pages 239-251, January.

    Cited by:

    1. Diane Aubert & Mireille Chiroleu-Assouline, 2019. "Environmental Tax Reform and Income Distribution with Imperfect Heterogeneous Labour Markets," Post-Print halshs-02095150, HAL.
    2. Chiroleu-Assouline, Mireille & Fodha, Mouez, 2014. "From regressive pollution taxes to progressive environmental tax reforms," European Economic Review, Elsevier, vol. 69(C), pages 126-142.
    3. Feng, Kuishuang & Hubacek, Klaus & Liu, Yu & Marchán, Estefanía & Vogt-Schilb, Adrien, 2018. "Managing the distributional effects of energy taxes and subsidy removal in Latin America and the Caribbean," Applied Energy, Elsevier, vol. 225(C), pages 424-436.
    4. Dorothee Boccanfuso & Antonio Estache & Luc Savard, 2011. "The Intra-country Distributional Impact of Policies to Fight Climate Change: A Survey," Journal of Development Studies, Taylor & Francis Journals, vol. 47(1), pages 97-117.
    5. Ordonez, Jose Antonio & Jakob, Michael & Steckel, Jan Christoph & Ward, Hauke, 2023. "India's just energy transition: Political economy challenges across states and regions," Energy Policy, Elsevier, vol. 179(C).
    6. Brenner, Mark & Riddle, Matthew & Boyce, James K., 2007. "A Chinese sky trust?: Distributional impacts of carbon charges and revenue recycling in China," Energy Policy, Elsevier, vol. 35(3), pages 1771-1784, March.
    7. Emmanuel Combet & Frédéric Ghersi & Jean-Charles Hourcade & Camille Thubin, 2010. "La fiscalité carbone au risque des enjeux d'équité," Revue française d'économie, Presses de Sciences-Po, vol. 0(2), pages 59-91.
    8. Tiemei Yan & Tong Zhang & Zhanguo Zhu, 2023. "The Environmental Tax Scheme in China’s Large-Scale Pig Farming: Balancing Economic Burden and Responsibility," Agriculture, MDPI, vol. 13(8), pages 1-20, August.
    9. Jarmila Zimmermannová & Michal Menšík, 2013. "Ex post analýza zavedení zdanění pevných paliv, zemního plynu a elektřiny [Ex-Post Analysis of Solid Fuels, Natural Gas and Electricity Taxation Introduction]," Politická ekonomie, Prague University of Economics and Business, vol. 2013(1), pages 46-66.
    10. Caillavet, France & Fadhuile, Adélaïde & Nichèle, Véronique, 2019. "Assessing the distributional effects of carbon taxes on food: Inequalities and nutritional insights in France," Ecological Economics, Elsevier, vol. 163(C), pages 20-31.
    11. Alvarez, Maximiliano, 2019. "Distributional effects of environmental taxation: An approximation with a meta-regression analysis," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 382-401.
    12. Nikodinoska, Dragana & Schröder, Carsten, 2016. "On the emissions–inequality and emissions–welfare trade-offs in energy taxation: Evidence on the German car fuels tax," Resource and Energy Economics, Elsevier, vol. 44(C), pages 206-233.
    13. Schaffitzel, Filip & Jakob, Michael & Soria, Rafael & Vogt-Schilb, Adrien & Ward, Hauke, 2020. "Can government transfers make energy subsidy reform socially acceptable? A case study on Ecuador," Energy Policy, Elsevier, vol. 137(C).
    14. Ian W.H. Parry & Hilary Sigman & Margaret Walls & Roberton C. Williams III, 2005. "The Incidence of Pollution Control Policies," NBER Working Papers 11438, National Bureau of Economic Research, Inc.
    15. Peter Slade, 2018. "The Effects of Pricing Canadian Livestock Emissions," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 66(2), pages 305-329, June.
    16. Vera, Sonia & Sauma, Enzo, 2015. "Does a carbon tax make sense in countries with still a high potential for energy efficiency? Comparison between the reducing-emissions effects of carbon tax and energy efficiency measures in the Chile," Energy, Elsevier, vol. 88(C), pages 478-488.
    17. Combet, Emmanuel & Ghersi, Frédéric & Hourcade, Jean-Charles & Thubin, Camille, 2013. "A Carbon Tax and the Risk of Inequity," Conference papers 332431, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    18. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    19. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    20. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," Working Papers halshs-03828939, HAL.
    21. Steven M. Karceski & Nives Dolšak & Aseem Prakash & Travis N. Ridout, 2020. "Did TV ads funded by fossil fuel industry defeat the Washington carbon tax?," Climatic Change, Springer, vol. 158(3), pages 301-307, February.
    22. Emmanuel Combet & Frédéric Ghersi & Jean Charles Hourcade & Daniel Théry, 2010. "Carbon Tax and Equity : The Importance of Policy Design," Post-Print halshs-00692516, HAL.
    23. Pope, Jeff & Owen, Anthony D., 2009. "Emission trading schemes: potential revenue effects, compliance costs and overall tax policy issues," Energy Policy, Elsevier, vol. 37(11), pages 4595-4603, November.
    24. Mireille Chiroleu-Assouline & Mouez Fodha, 2023. "Debt, tax and environmental policy [Dette, taxe et politique environnementale]," PSE-Ecole d'économie de Paris (Postprint) halshs-04181981, HAL.
    25. Pashardes, Panos & Pashourtidou, Nicoletta & Zachariadis, Theodoros, 2014. "Estimating welfare aspects of changes in energy prices from preference heterogeneity," Energy Economics, Elsevier, vol. 42(C), pages 58-66.
    26. Nikodinoska, Dragana & Schröder, Carsten, 2015. "On the emissions-inequality trade-off in energy taxation: Evidence on the German car fuel tax," Discussion Papers 2015/6, Free University Berlin, School of Business & Economics.
    27. Qiao-Mei Liang & Qian Wang & Yi-Ming Wei, 2013. "Assessing the Distributional Impacts of Carbon Tax among Households across Different Income Groups: The Case of China," Energy & Environment, , vol. 24(7-8), pages 1323-1346, December.
    28. Többen, Johannes, 2017. "Regional Net Impacts and Social Distribution Effects of Promoting Renewable Energies in Germany," Ecological Economics, Elsevier, vol. 135(C), pages 195-208.
    29. Arief Anshory Yusuf & Budy P. Resosudarmo, 2007. "On the Distributional Effect of Carbon Tax in Developing Countries: The Case of Indonesia," Working Papers in Economics and Development Studies (WoPEDS) 200705, Department of Economics, Padjadjaran University, revised Aug 2007.
    30. Vogt-Schilb, Adrien & Hallegatte, Stephane, 2017. "Climate Policies and Nationally Determined Contributions: Reconciling the Needed Ambition with the Political Economy," IDB Publications (Working Papers) 8317, Inter-American Development Bank.
    31. Farrell, Niall, 2015. "What Factors drive Inequalities in Carbon Tax Incidence? Decomposing Socioeconomic Inequalities in Carbon Tax Incidence in Ireland," Papers WP519, Economic and Social Research Institute (ESRI).
    32. Jarmila Zimmermannová, 2009. "Dopady zdanění elektřiny, zemního plynu a pevných paliv na odvětví OKEČ v české republice [The impact of taxation of electricity, natural gas and solid fuels on sectors of nace in the Czech Republi," Politická ekonomie, Prague University of Economics and Business, vol. 2009(2), pages 213-231.
    33. Thomson, Harriet & Snell, Carolyn, 2013. "Quantifying the prevalence of fuel poverty across the European Union," Energy Policy, Elsevier, vol. 52(C), pages 563-572.
    34. Yu, Fan & Xiao, De & Chang, Meng-Shiuh, 2021. "The impact of carbon emission trading schemes on urban-rural income inequality in China: A multi-period difference-in-differences method," Energy Policy, Elsevier, vol. 159(C).
    35. Sijeong Lim & Andreas Duit, 2018. "Partisan politics, welfare states, and environmental policy outputs in the OECD countries, 1975–2005," Regulation & Governance, John Wiley & Sons, vol. 12(2), pages 220-237, June.
    36. Sally Owen & Ilan Noy, 2017. "The Unfortunate Regressivity of Public Natural Hazard Insurance: A Quantitative Analysis of a New Zealand Case," CESifo Working Paper Series 6540, CESifo.
    37. Labandeira, Xavier & Labeaga, José M. & Rodríguez, Miguel, 2009. "An integrated economic and distributional analysis of energy policies," Energy Policy, Elsevier, vol. 37(12), pages 5776-5786, December.
    38. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    39. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," World Inequality Lab Working Papers halshs-03828939, HAL.
    40. Nils Ohlendorf & Michael Jakob & Jan Christoph Minx & Carsten Schröder & Jan Christoph Steckel, 2018. "Distributional Impacts of Climate Mitigation Policies - a Meta-Analysis," Discussion Papers of DIW Berlin 1776, DIW Berlin, German Institute for Economic Research.
    41. Serrano, Monica, 2007. "The Production and Consumption Accounting Principles as a Guideline for Designing Environmental Tax Policy," Climate Change Modelling and Policy Working Papers 12032, Fondazione Eni Enrico Mattei (FEEM).
    42. Oueslati, Walid & Zipperer, Vera & Rousselière, Damien & Dimitropoulos, Alexandros, 2017. "Energy taxes, reforms and income inequality: An empirical cross-country analysis," International Economics, Elsevier, vol. 150(C), pages 80-95.
    43. Sebastian Rausch & Gilbert E. Metcalf & John M. Reilly, 2011. "Distributional Impacts of Carbon Pricing: A General Equilibrium Approach with Micro-Data for Households," NBER Working Papers 17087, National Bureau of Economic Research, Inc.
    44. Dissou, Yazid & Siddiqui, Muhammad Shahid, 2014. "Can carbon taxes be progressive?," Energy Economics, Elsevier, vol. 42(C), pages 88-100.
    45. Lucia Rotaris & Alessandro Gardelli, 2018. "Carbon Tax acceptability: A comparative experimental analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2018(1), pages 117-132.
    46. Distefano, Tiziano & D’Alessandro, Simone, 2023. "Introduction of the carbon tax in Italy: Is there room for a quadruple-dividend effect?," Energy Economics, Elsevier, vol. 120(C).
    47. David Klenert & Gregor Schwerhoff & Ottmar Edenhofer & Linus Mattauch, 2018. "Environmental Taxation, Inequality and Engel’s Law: The Double Dividend of Redistribution," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(3), pages 605-624, November.
    48. Beibei Cheng & Peng Wang & Songyan Ren, 2023. "An Evaluation on Sectoral Competitiveness of Guangdong in China: The Role of Carbon Taxation Policy," Energies, MDPI, vol. 16(4), pages 1-21, February.
    49. Anan Wattanakuljarus, 2019. "Effects and burdens of a carbon tax scheme in Thailand," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 9(2), pages 173-219, June.
    50. Nicoletta Batini & Ian Parry & Philippe Wingender, 2021. "Climate Mitigation Policy in Denmark: A Prototype for Other Countries," CESifo Working Paper Series 8895, CESifo.
    51. Hájek, Miroslav & Zimmermannová, Jarmila & Helman, Karel & Rozenský, Ladislav, 2019. "Analysis of carbon tax efficiency in energy industries of selected EU countries," Energy Policy, Elsevier, vol. 134(C).
    52. Dorband, Ira Irina & Jakob, Michael & Kalkuhl, Matthias & Steckel, Jan Christoph, 2019. "Poverty and distributional effects of carbon pricing in low- and middle-income countries – A global comparative analysis," World Development, Elsevier, vol. 115(C), pages 246-257.
    53. Lin, Boqiang & Li, Xuehui, 2011. "The effect of carbon tax on per capita CO2 emissions," Energy Policy, Elsevier, vol. 39(9), pages 5137-5146, September.
    54. Wesseh, Presley K. & Lin, Boqiang, 2016. "Modeling environmental policy with and without abatement substitution: A tradeoff between economics and environment?," Applied Energy, Elsevier, vol. 167(C), pages 34-43.
    55. Joshua Blonz & Dallas Burtraw & Margaret Walls, 2012. "Social safety nets and US climate policy costs," Climate Policy, Taylor & Francis Journals, vol. 12(4), pages 474-490, July.
    56. Jacqueline Cottrell & Eike Meyer, 2012. "Ecological tax reform in Europe and Central Asia," Chapters, in: Larry Kreiser & Ana Yábar Sterling & Pedro Herrera & Janet E. Milne & Hope Ashiabor (ed.), Carbon Pricing, Growth and the Environment, chapter 5, pages 67-86, Edward Elgar Publishing.
    57. McLaughlin, Craig & Elamer, Ahmed A. & Glen, Thomas & AlHares, Aws & Gaber, Hazem Rasheed, 2019. "Accounting society's acceptability of carbon taxes: Expectations and reality," Energy Policy, Elsevier, vol. 131(C), pages 302-311.
    58. da Silva Freitas, Lucio Flavio & de Santana Ribeiro, Luiz Carlos & de Souza, Kênia Barreiro & Hewings, Geoffrey John Dennis, 2016. "The distributional effects of emissions taxation in Brazil and their implications for climate policy," Energy Economics, Elsevier, vol. 59(C), pages 37-44.
    59. Moz-Christofoletti, Maria Alice & Pereda, Paula Carvalho, 2021. "Winners and losers: the distributional impacts of a carbon tax in Brazil," Ecological Economics, Elsevier, vol. 183(C).
    60. Jiang, Zhujun & Ouyang, Xiaoling & Huang, Guangxiao, 2015. "The distributional impacts of removing energy subsidies in China," China Economic Review, Elsevier, vol. 33(C), pages 111-122.
    61. Saelim, Supawan, 2019. "Carbon tax incidence on household consumption: Heterogeneity across socio-economic factors in Thailand," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 159-174.
    62. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Guo, Lin & Zhang, Kun & Xue, Jinjun & Liang, Qiao-Mei, 2019. "Distributional impact of carbon pricing in Chinese provinces," Energy Economics, Elsevier, vol. 81(C), pages 327-340.
    63. Mireille Chiroleu-Assouline & Mouez Fodha, 2011. "Verdissement de la fiscalité : à qui profite le double dividende ?," Post-Print halshs-00601768, HAL.
    64. Maria Alice Moz-Christofoletti & Paula Carvalho Pereda, 2021. "Winners and losers: the distributional impact of a carbon tax in Brazil," Working Papers, Department of Economics 2021_08, University of São Paulo (FEA-USP).
    65. Paula Casal, 2012. "Progressive Environmental Taxation: A Defence," Political Studies, Political Studies Association, vol. 60(2), pages 419-433, June.
    66. Mathias Kirchner & Mark Sommer & Claudia Kettner-Marx & Daniela Kletzan-Slamanig & Katharina Köberl & Kurt Kratena, 2018. "CO2 Tax Scenarios for Austria. Impacts on Household Income Groups, CO2 Emissions, and the Economy," WIFO Working Papers 558, WIFO.
    67. Wang, Qian & Hubacek, Klaus & Feng, Kuishuang & Wei, Yi-Ming & Liang, Qiao-Mei, 2016. "Distributional effects of carbon taxation," Applied Energy, Elsevier, vol. 184(C), pages 1123-1131.
    68. Wu, T. & Thomassin, P.J., 2018. "The Impact of Carbon Tax on Food Prices and Consumption in Canada," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 275913, International Association of Agricultural Economists.
    69. Matthew Riddle & James Boyce, 2007. "Cap and Dividend: How to Curb Global Warming while Protecting the Incomes of American Families," Working Papers wp150, Political Economy Research Institute, University of Massachusetts at Amherst.
    70. Heindl, Peter & Löschel, Andreas, 2015. "Social implications of green growth policies from the perspective of energy sector reform and its impact on households," ZEW Discussion Papers 15-012, ZEW - Leibniz Centre for European Economic Research.
    71. Winter, Simon & Schlesewsky, Lisa, 2019. "The German feed-in tariff revisited - an empirical investigation on its distributional effects," Energy Policy, Elsevier, vol. 132(C), pages 344-356.
    72. Peter Grösche & Carsten Schröder, 2014. "On the redistributive effects of Germany’s feed-in tariff," Empirical Economics, Springer, vol. 46(4), pages 1339-1383, June.
    73. Qin, Ping. & Chen, Peilin. & Zhang, Xiao-Bing. & Xie, Lunyu., 2020. "Coal taxation reform in China and its distributional effects on residential consumers," Energy Policy, Elsevier, vol. 139(C).
    74. Stede, Jan & Pauliuk, Stefan & Hardadi, Gilang & Neuhoff, Karsten, 2021. "Carbon pricing of basic materials: Incentives and risks for the value chain and consumers," Ecological Economics, Elsevier, vol. 189(C).
    75. Younes, Amin & Fingerman, Kevin R. & Barrientos, Cassidy & Carman, Jerome & Johnson, Karly & Wallach, Eli S., 2022. "How the U.S. Renewable Fuel Standard could use garbage to pay for electric vehicles," Energy Policy, Elsevier, vol. 166(C).
    76. France Caillavet & Adélaïde Fadhuile & Veronique Nichèle, 2018. "Assessing the distributional effects of carbon taxes on food: inequalities and nutritional insights," Working Papers hal-01919440, HAL.
    77. Concetta Castiglione & Davide Infante & Maria Teresa Minervini & Janna Smirnova, 2014. "Environmental taxation in Europe: What does it depend on?," Cogent Economics & Finance, Taylor & Francis Journals, vol. 2(1), pages 1-8, December.
    78. Tram T.H. Nguyen and Wonho Song, 2021. "Carbon Pricing and Income Inequality: An Empirical Investigation," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 46(2), pages 155-182, June.
    79. Emmanuel Combet & Frédéric Ghersi & Jean Charles Hourcade, 2009. "Taxe carbone, une mesure socialement régressive ? Vrais problèmes et faux débats," Working Papers hal-00866409, HAL.
    80. Katharina Schüller & Kateřina Staňková & Frank Thuijsman, 2017. "Game Theory of Pollution: National Policies and Their International Effects," Games, MDPI, vol. 8(3), pages 1-15, July.
    81. Mireille Chiroleu-Assouline, 2022. "Rendre acceptable la nécessaire taxation du carbone - Quelles pistes pour la France ?," PSE-Ecole d'économie de Paris (Postprint) halshs-03757114, HAL.
    82. Assaad Ghazouani & Wanjun Xia & Mehdi Ben Jebli & Umer Shahzad, 2020. "Exploring the Role of Carbon Taxation Policies on CO 2 Emissions: Contextual Evidence from Tax Implementation and Non-Implementation European Countries," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    83. Yu‐Bong Lai, 2018. "The Feasibility of the Double‐Dividend Hypothesis in a Democratic Economy," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(1), pages 211-241, January.
    84. Cludius, Johanna & Beznoska, Martin & Steiner, Viktor, 2012. "Distributional effects of the European Emissions Trading System and the role of revenue recycling: Empirical evidence from combined industry- and household-level data," Discussion Papers 2012/6, Free University Berlin, School of Business & Economics.
    85. Chen, Shiyi, 2013. "What is the potential impact of a taxation system reform on carbon abatement and industrial growth in China?," Economic Systems, Elsevier, vol. 37(3), pages 369-386.
    86. Jan Imhof, 2012. "Fuel Exemptions, Revenue Recycling, Equity and Efficiency: Evaluating Post-Kyoto Policies for Switzerland," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 197-227, June.
    87. James Boyce & Matthew Riddle & Mark D. Brenner, 2005. "A Chinese Sky Trust? Distributional Impacts of Carbon charges and Revenue Recycling in China," Working Papers wp_brenner_riddle_boyce, Political Economy Research Institute, University of Massachusetts at Amherst.
    88. Bercholz, Maxime & Roantree, Barra, 2019. "Carbon taxes and compensation options," Papers BP2020/1, Economic and Social Research Institute (ESRI).
    89. Rao, Narasimha D., 2013. "Distributional impacts of climate change mitigation in Indian electricity: The influence of governance," Energy Policy, Elsevier, vol. 61(C), pages 1344-1356.
    90. G.G. Dolphin & M.G. Pollitt & D.M. Newbery, 2016. "The Political Economy of Carbon Pricing: a Panel Analysis," Working Papers EPRG 1627, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    91. Tim Callan & Sean Lyons & Sue Scott & Richard S. J. Tol & Stefano Verde, 2008. "The Distributional Implications of a Carbon Tax in Ireland," Papers WP250, Economic and Social Research Institute (ESRI).
    92. Chepeliev, Maksym & Osorio Rodarte, Israel & van der Mensbrugghe, Dominique, 2021. "Distributional Impacts of Carbon Pricing Policies under Paris Agreement: Inter and Intra-Regional Perspectives," Conference papers 333274, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    93. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    94. Jarmila Zimmermannová, 2013. "Current and Proposed CO2 Taxation in the European Union Member States in the Energy Sector [Současné a navrhované zdanění emisí CO2 v zemích Evropské unie v oblasti energetiky]," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2013(2), pages 40-54.
    95. Moritz A. Drupp & Ulrike Kornek & Jasper N. Meya & Lutz Sager, 2021. "Inequality and the Environment: The Economics of a Two-Headed Hydra," CESifo Working Paper Series 9447, CESifo.
    96. Ian Parry, 2015. "Carbon Tax Burdens on Low-Income Households: A Reason for Delaying Climate Policy?," CESifo Working Paper Series 5482, CESifo.
    97. Corbett Grainger & Charles Kolstad, 2010. "Who Pays a Price on Carbon?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(3), pages 359-376, July.
    98. Wang, Feng & Zhang, Bing, 2016. "Distributional incidence of green electricity price subsidies in China," Energy Policy, Elsevier, vol. 88(C), pages 27-38.
    99. Emmanuel Combet & Frédéric Ghersi & Jean Charles Hourcade, 2009. "Taxe carbone, une mesure socialement régressive ? Vrais problèmes et faux débats," CIRED Working Papers hal-00866409, HAL.
    100. Klok, Jacob & Larsen, Anders & Dahl, Anja & Hansen, Kirsten, 2006. "Ecological Tax Reform in Denmark: history and social acceptability," Energy Policy, Elsevier, vol. 34(8), pages 905-916, May.
    101. Octavian-Dragomir Jora & Alexandru Pătruți & Mihaela Iacob & Delia-Raluca Șancariuc, 2020. "“Squaring the Circle”—The Disregarded Institutional Theory and the Distorted Practice of Packaging Waste Recycling in Romania," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    102. Alberto M. Zanni & Abigail L. Bristow & Mark Wardman, 2013. "The potential behavioural effect of personal carbon trading: results from an experimental survey," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 2(2), pages 222-243, July.
    103. Boqiang Lin & Zhijie Jia, 2020. "Supply control vs. demand control: why is resource tax more effective than carbon tax in reducing emissions?," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-13, December.
    104. Sebastian Miller & Mauricio Vela, 2013. "Are Environmentally Related Taxes Effective?," Research Department Publications IDB-WP-467, Inter-American Development Bank, Research Department.
    105. Waldemar Marz, 2019. "Climate Policy and Inequality in Two-Dimensional Political Competition," ifo Working Paper Series 319, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    106. Ariane Kehlbacher & Richard Tiffin & Adam Briggs & Mike Berners-Lee & Peter Scarborough, 2016. "The distributional and nutritional impacts and mitigation potential of emission-based food taxes in the UK," Climatic Change, Springer, vol. 137(1), pages 121-141, July.
    107. Emmanuel Combet & Frédéric Ghersi & Jean Charles Hourcade & Daniel Théry, 2009. "Need a Carbon Tax be Socially Regressive ? True Challenges and Wrong Debates," CIRED Working Papers hal-00866410, HAL.
    108. Kirchner, Mathias & Sommer, Mark & Kratena, Kurt & Kletzan-Slamanig, Daniela & Kettner-Marx, Claudia, 2019. "CO2 taxes, equity and the double dividend – Macroeconomic model simulations for Austria," Energy Policy, Elsevier, vol. 126(C), pages 295-314.
    109. Dustin Chambers & Courtney A. Collins & Alan Krause, 2019. "How do federal regulations affect consumer prices? An analysis of the regressive effects of regulation," Public Choice, Springer, vol. 180(1), pages 57-90, July.
    110. Annika J. Thies & Matthias Staudigel & Daniela Weible, 2023. "A segmentation of fresh meat shoppers based on revealed preferences," Agribusiness, John Wiley & Sons, Ltd., vol. 39(4), pages 1075-1099, October.
    111. Chambers, Dustin & Collins, Courtney, 2016. "How Do Federal Regulations Affect Consumer Prices? An Analysis of the Regressive Effects of Regulation," Working Papers 06871, George Mason University, Mercatus Center.
    112. Ekins, Paul & Pollitt, Hector & Barton, Jennifer & Blobel, Daniel, 2011. "The implications for households of environmental tax reform (ETR) in Europe," Ecological Economics, Elsevier, vol. 70(12), pages 2472-2485.
    113. Martin Beznoska & Johanna Cludius & Viktor Steiner, 2012. "The Incidence of the European Union Emissions Trading System and the Role of Revenue Recycling: Empirical Evidence from Combined Industry- and Household-Level Data," Discussion Papers of DIW Berlin 1227, DIW Berlin, German Institute for Economic Research.
    114. Jia, Zhijie & Lin, Boqiang & Liu, Xiying, 2023. "Rethinking the equity and efficiency of carbon tax: A novel perspective," Applied Energy, Elsevier, vol. 346(C).
    115. Emmanuel Combet & Frédéric Ghersi & Jean Charles Hourcade & Daniel Théry, 2009. "Need a Carbon Tax be Socially Regressive ? True Challenges and Wrong Debates," Working Papers hal-00866410, HAL.
    116. Mireille Chiroleu-Assouline, 2015. "La fiscalité environnementale en France peut-elle devenir réellement écologique ?. État des lieux et conditions d’acceptabilité," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 129-165.
    117. Hammar, Henrik & Jagers, Sverker C., 2007. "What is a fair CO2 tax increase? On fair emission reductions in the transport sector," Ecological Economics, Elsevier, vol. 61(2-3), pages 377-387, March.
    118. Rafique, Muhammad Zahid & Fareed, Zeeshan & Ferraz, Diogo & Ikram, Majid & Huang, Shaoan, 2022. "Exploring the heterogenous impacts of environmental taxes on environmental footprints: An empirical assessment from developed economies," Energy, Elsevier, vol. 238(PA).
    119. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    120. Sally Owen & Ilan Noy, 2019. "Regressivity in Public Natural Hazard Insurance: a Quantitative Analysis of the New Zealand Case," Economics of Disasters and Climate Change, Springer, vol. 3(3), pages 235-255, October.
    121. A. J. Stagliano, 2017. "Carbon Trading Reporting: The Case of Spanish Companies," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 23(2), pages 231-243, May.
    122. Kerkhof, Annemarie C. & Moll, Henri C. & Drissen, Eric & Wilting, Harry C., 2008. "Taxation of multiple greenhouse gases and the effects on income distribution: A case study of the Netherlands," Ecological Economics, Elsevier, vol. 67(2), pages 318-326, September.
    123. Li, Chiao-Ting & Peng, Huei & Sun, Jing, 2013. "Reducing CO2 emissions on the electric grid through a carbon disincentive policy," Energy Policy, Elsevier, vol. 60(C), pages 793-802.
    124. Jiang, Zhujun & Shao, Shuai, 2014. "Distributional effects of a carbon tax on Chinese households: A case of Shanghai," Energy Policy, Elsevier, vol. 73(C), pages 269-277.
    125. Rosas-Flores, Jorge Alberto & Bakhat, Mohcine & Rosas-Flores, Dionicio & Fernández Zayas, José Luis, 2017. "Distributional effects of subsidy removal and implementation of carbon taxes in Mexican households," Energy Economics, Elsevier, vol. 61(C), pages 21-28.
    126. Aiwen Zhao & Xiaoqian Song & Jiajie Li & Qingchun Yuan & Yingshun Pei & Ruilin Li & Michael Hitch, 2023. "Effects of Carbon Tax on Urban Carbon Emission Reduction: Evidence in China Environmental Governance," IJERPH, MDPI, vol. 20(3), pages 1-19, January.
    127. Qian Wang & Qiao-Mei Liang, 2015. "Will a carbon tax hinder China’s efforts to improve its primary income distribution status?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1407-1436, December.
    128. Corbett A. Grainger & Charles D. Kolstad, 2010. "Distribution and Climate Change Policies," Chapters, in: Emilio Cerdá Tena & Xavier Labandeira (ed.), Climate Change Policies, chapter 7, Edward Elgar Publishing.
    129. Anan Wattanakuljarus, 2021. "Diverse effects of fossil fuel subsidy reform on industrial competitiveness in Thailand," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 489-517, September.
    130. Sodero, Stephanie, 2011. "Policy in motion: reassembling carbon pricing policy development in the personal transport sector in British Columbia," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1474-1481.
    131. Wesseh, Presley K. & Lin, Boqiang & Atsagli, Philip, 2017. "Carbon taxes, industrial production, welfare and the environment," Energy, Elsevier, vol. 123(C), pages 305-313.
    132. Dorothée Boccanfuso & Antonio Estache & Luc Savard, 2008. "Distributional impact of global warming environmental policies: A survey," Cahiers de recherche 08-14, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.

  14. Henrik Klinge Jacobsen & Katja Birr-Pedersen & Mette Wier, 2003. "Distributional Implications of Environmental Taxation in Denmark," Fiscal Studies, Institute for Fiscal Studies, vol. 24(4), pages 477-499, December.
    See citations under working paper version above.
  15. Jacobsen, Henrik Klinge, 2001. "Technological progress and long-term energy demand -- a survey of recent approaches and a Danish case," Energy Policy, Elsevier, vol. 29(2), pages 147-157, January.

    Cited by:

    1. Löschel, Andreas, 2001. "Technological change in economic models of environmental policy: a survey," ZEW Discussion Papers 01-62, ZEW - Leibniz Centre for European Economic Research.
    2. Worrell, Ernst & Biermans, Gijs, 2005. "Move over! Stock turnover, retrofit and industrial energy efficiency," Energy Policy, Elsevier, vol. 33(7), pages 949-962, May.
    3. Wenhan Ren & Jing Ni & Wen Jiao & Yan Li, 2023. "Explore the key factors of sustainable development: A bibliometric and visual analysis of technological progress," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 492-509, February.
    4. zvingilaite, Erika & Klinge Jacobsen, Henrik, 2012. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local externalities," MPRA Paper 41545, University Library of Munich, Germany.

  16. Henrik Klinge Jacobsen, 2000. "Technology Diffusion in Energy-Economy Models: The Case of Danish Vintage Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 43-71.

    Cited by:

    1. P. Balachandra & B. Sudhakara Reddy, 2007. "Commercialisation of Sustainable Energy Technologies," Energy Working Papers 22326, East Asian Bureau of Economic Research.
    2. Ruth, Matthias & Amato, Anthony, 2002. "Vintage structure dynamics and climate change policies: the case of US iron and steel," Energy Policy, Elsevier, vol. 30(7), pages 541-552, June.
    3. Pandey, Rahul, 2002. "Energy policy modelling: agenda for developing countries," Energy Policy, Elsevier, vol. 30(2), pages 97-106, January.
    4. Hidalgo, Ignacio & Szabo, Laszlo & Carlos Ciscar, Juan & Soria, Antonio, 2005. "Technological prospects and CO2 emission trading analyses in the iron and steel industry: A global model," Energy, Elsevier, vol. 30(5), pages 583-610.
    5. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2018. "Joint and conditional dependence modeling of peak district heating demand and outdoor temperature: a copula-based approach," BEMPS - Bozen Economics & Management Paper Series BEMPS53, Faculty of Economics and Management at the Free University of Bozen.
    6. Worrell, Ernst & Biermans, Gijs, 2005. "Move over! Stock turnover, retrofit and industrial energy efficiency," Energy Policy, Elsevier, vol. 33(7), pages 949-962, May.
    7. Szabo, Laszlo & Hidalgo, Ignacio & Ciscar, Juan Carlos & Soria, Antonio, 2006. "CO2 emission trading within the European Union and Annex B countries: the cement industry case," Energy Policy, Elsevier, vol. 34(1), pages 72-87, January.
    8. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    9. Bonilla, David, 2007. "Fuel Price Changes and the Adoption of Cogeneration in the U.K. and Netherlands," The Electricity Journal, Elsevier, vol. 20(7), pages 59-71.
    10. Zvingilaite, Erika & Klinge Jacobsen, Henrik, 2015. "Heat savings and heat generation technologies: Modelling of residential investment behaviour with local health costs," Energy Policy, Elsevier, vol. 77(C), pages 31-45.
    11. William X. Wei & Dezhi Chen & Daiping Hu, 2016. "Study on the Evolvement of Technology Development and Energy Efficiency—A Case Study of the Past 30 Years of Development in Shanghai," Sustainability, MDPI, vol. 8(5), pages 1-21, May.
    12. Bonilla, David & Akisawa, Atsushi & Kashiwagi, Takao, 2003. "Modelling the adoption of industrial cogeneration in Japan using manufacturing plant survey data," Energy Policy, Elsevier, vol. 31(9), pages 895-910, July.

  17. Henrik Jacobsen, 2000. "Energy Demand, Structural Change and Trade: A Decomposition Analysis of the Danish Manufacturing Industry," Economic Systems Research, Taylor & Francis Journals, vol. 12(3), pages 319-343.

    Cited by:

    1. Ning Chang & Michael L. Lahr, 2016. "Changes in China’s production-source CO 2 emissions: insights from structural decomposition analysis and linkage analysis," Economic Systems Research, Taylor & Francis Journals, vol. 28(2), pages 224-242, June.
    2. Jesper Stage, 2002. "Structural Shifts In Namibian Energy Use: An Input‐Output Approach," South African Journal of Economics, Economic Society of South Africa, vol. 70(6), pages 1103-1125, September.
    3. Mette Wier & Manfred Lenzen & Jesper Munksgaard & Sinne Smed, 2001. "Effects of Household Consumption Patterns on CO2 Requirements," Economic Systems Research, Taylor & Francis Journals, vol. 13(3), pages 259-274.
    4. Zaman, Khalid & Mushtaq Khan, Muhammad & Ahmad, Mehboob, 2013. "Factors affecting commercial energy consumption in Pakistan: Progress in energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 107-135.
    5. Rutger Hoekstra & Marco A. Janssen, 2002. "Environmental Responsibility and Policy in a Two Country Dynamic Input-Output Model," Tinbergen Institute Discussion Papers 02-103/3, Tinbergen Institute.
    6. José A. Camacho & Lucas Silva Almeida & Mercedes Rodríguez & Jesús Molina, 2022. "Domestic versus foreign energy use: an analysis for four European countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4602-4622, April.
    7. Shigemi Kagawa & Hajime Inamura & Yuichi Moriguchi, 2002. "The Invisible Multipliers of Joint-products," Economic Systems Research, Taylor & Francis Journals, vol. 14(2), pages 185-203, June.
    8. Yen-Yin Chen & Jung-Hua Wu, 2008. "Simple Keynesian input–output structural decomposition analysis using weighted Shapley value resolution," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(4), pages 879-892, December.
    9. Youguo Zhang, 2012. "Scale, Technique and Composition Effects in Trade-Related Carbon Emissions in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 371-389, March.
    10. Carfora, Alfonso & Pansini, Rosaria Vega & Scandurra, Giuseppe, 2022. "Energy dependence, renewable energy generation and import demand: Are EU countries resilient?," Renewable Energy, Elsevier, vol. 195(C), pages 1262-1274.
    11. Wood, Richard & Lenzen, Manfred, 2009. "Structural path decomposition," Energy Economics, Elsevier, vol. 31(3), pages 335-341, May.
    12. Erik Dietzenbacher & Jesper Stage, 2006. "Mixing oil and water? Using hybrid input-output tables in a Structural decomposition analysis," Economic Systems Research, Taylor & Francis Journals, vol. 18(1), pages 85-95.
    13. Marin, Giovanni & Mazzanti, Massimiliano, 2009. "Emissions Trends, Labour Productivity Dynamics and Time-Related Events - Sector Heterogeneous Analyses of Decoupling/Recoupling on a 1990-2006 NAMEA," MPRA Paper 17903, University Library of Munich, Germany.
    14. Marcel Kohler, 2008. "The impact of international trade on changing patterns of energy use in South African industry," Working Papers 088, Economic Research Southern Africa.
    15. Paola Rocchi & Monica Serrano, 2011. "Environmental Structural Decomposition Analysis of Italian Emissions, 1995-2005," Working Papers in Economics 267, Universitat de Barcelona. Espai de Recerca en Economia.
    16. Sikhanwita Roy & Tuhin Das & Debesh Chakraborty, 2002. "A Study on the Indian Information Sector: An Experiment with Input-Output Techniques," Economic Systems Research, Taylor & Francis Journals, vol. 14(2), pages 107-129, June.
    17. Serrano, Monica, 2007. "The Production and Consumption Accounting Principles as a Guideline for Designing Environmental Tax Policy," Climate Change Modelling and Policy Working Papers 12032, Fondazione Eni Enrico Mattei (FEEM).
    18. Yongming Huang & Jamal Khan, 2022. "Has the information and communication technology sector become the engine of China’s economic growth?," Review of Development Economics, Wiley Blackwell, vol. 26(1), pages 510-533, February.
    19. Nagashima, Fumiya, 2018. "The sign reversal problem in structural decomposition analysis," Energy Economics, Elsevier, vol. 72(C), pages 307-312.
    20. Jan A van der Linden & Erik Dietzenbacher, 2000. "The Determinants of Structural Change in the European Union: A New Application of RAS," Environment and Planning A, , vol. 32(12), pages 2205-2229, December.
    21. Hong, Jae Pyo & Byun, Jeong Eun & Kim, Pang Ryong, 2016. "Structural changes and growth factors of the ICT industry in Korea: 1995–2009," Telecommunications Policy, Elsevier, vol. 40(5), pages 502-513.
    22. Azlina Abdullah & Hussain Ali Bekhet, 2019. "Investigating the Driving Forces of Energy Intensity Change in Malaysia 1991-2010: A Structural Decomposition Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(4), pages 121-130.
    23. Erik Dietzenbacher, 2002. "Interregional Multipliers: Looking Backward, Looking Forward," Regional Studies, Taylor & Francis Journals, vol. 36(2), pages 125-136.
    24. J., Pablo Muñoz & Hubacek, Klaus, 2008. "Material implication of Chile's economic growth: Combining material flow accounting (MFA) and structural decomposition analysis (SDA)," Ecological Economics, Elsevier, vol. 65(1), pages 136-144, March.
    25. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The Effect of Globalisation on Energy Footprints: Disentangling the Links of Global Value Chains," Hannover Economic Papers (HEP) dp-587, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    26. Ryoji Hasegawa & Shigemi Kagawa & Makiko Tsukui, 2015. "Carbon footprint analysis through constructing a multi-region input–output table: a case study of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-20, December.
    27. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.
    28. Ebru Voyvoda, 2009. "Sources of Structural Change and its Impact on Interdependence: An Input-Output Perspective for The Post-1980 Turkish Economy," Working Papers 507, Economic Research Forum, revised Dec 2009.
    29. Aying Liu & David Saal, 2001. "Structural Change in Apartheid-era South Africa: 1975-93," Economic Systems Research, Taylor & Francis Journals, vol. 13(3), pages 235-257.
    30. Mark De Haan, 2001. "A Structural Decomposition Analysis of Pollution in the Netherlands," Economic Systems Research, Taylor & Francis Journals, vol. 13(2), pages 181-196.
    31. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    32. Wiedmann, Thomas & Lenzen, Manfred & Turner, Karen & Barrett, John, 2007. "Examining the global environmental impact of regional consumption activities -- Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade," Ecological Economics, Elsevier, vol. 61(1), pages 15-26, February.
    33. Massimiliano Mazzanti & Antonio Musolesi, 2011. "Income and time related effects in EKC," Working Papers 201105, University of Ferrara, Department of Economics.
    34. Wang, H. & Ang, B.W. & Su, Bin, 2017. "Assessing drivers of economy-wide energy use and emissions: IDA versus SDA," Energy Policy, Elsevier, vol. 107(C), pages 585-599.
    35. Ghertner, D. Asher & Fripp, Matthias, 2007. "Trading away damage: Quantifying environmental leakage through consumption-based, life-cycle analysis," Ecological Economics, Elsevier, vol. 63(2-3), pages 563-577, August.
    36. Paul De Boer, 2008. "Additive Structural Decomposition Analysis and Index Number Theory: An Empirical Application of the Montgomery Decomposition," Economic Systems Research, Taylor & Francis Journals, vol. 20(1), pages 97-109.
    37. Massimiliano Mazzanti & Antonio Musolesi, 2010. "Carbon Abatement Leaders and Laggards Non Parametric Analyses of Policy Oriented Kuznets Curves," Working Papers 2010.149, Fondazione Eni Enrico Mattei.
    38. Mazzanti, Massimiliano & Montini, Anna, 2010. "Embedding the drivers of emission efficiency at regional level -- Analyses of NAMEA data," Ecological Economics, Elsevier, vol. 69(12), pages 2457-2467, October.
    39. Erik Dietzenbacher & Bart Los, 2000. "Structural Decomposition Analyses with Dependent Determinants," Economic Systems Research, Taylor & Francis Journals, vol. 12(4), pages 497-514.
    40. Giovanni Marin & Massimiliano Mazzanti, 2013. "The evolution of environmental and labor productivity dynamics," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 357-399, April.
    41. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
    42. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    43. Yun-Hsun Huang & Jung-Hua Wu & Hao-Syuan Huang, 2021. "Analyzing the Driving Forces behind CO 2 Emissions in Energy-Resource-Poor and Fossil-Fuel-Centered Economies: Case Studies from Taiwan, Japan, and South Korea," Energies, MDPI, vol. 14(17), pages 1-14, August.
    44. Dong Guo & Geoffrey Hewings & Michael Sonis, 2005. "Integrating decomposition approaches for the analysis of temporal changes in economic structure: an application to Chicago's economy from 1980 to 2000," Economic Systems Research, Taylor & Francis Journals, vol. 17(3), pages 297-315.
    45. Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    46. Rutger Hoekstra & Jeroen van den Bergh, 2002. "Structural Decomposition Analysis of Physical Flows in the Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 23(3), pages 357-378, November.
    47. Tong Zhao & Zhijie Song & Tianjiao Li, 2018. "Effect of innovation capacity, production capacity and vertical specialization on innovation performance in China's electronic manufacturing: Analysis from the supply and demand sides," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-23, July.
    48. Møller, Niels Framroze, 2015. "Energy Demand, Substitution and a Potential for Electrification: An econometric analysis of eight Danish subsectors," MPRA Paper 69931, University Library of Munich, Germany.
    49. Møller, Niels Framroze, 2017. "Energy demand, substitution and environmental taxation: An econometric analysis of eight subsectors of the Danish economy," Energy Economics, Elsevier, vol. 61(C), pages 97-109.

  18. Klinge Jacobsen, Henrik, 1998. "Integrating the bottom-up and top-down approach to energy-economy modelling: the case of Denmark," Energy Economics, Elsevier, vol. 20(4), pages 443-461, September.

    Cited by:

    1. Jacobsen, Henrik Klinge, 2001. "Technological progress and long-term energy demand -- a survey of recent approaches and a Danish case," Energy Policy, Elsevier, vol. 29(2), pages 147-157, January.
    2. Daniel Neves Schmitz Gonçalves & Renata Albergaria de Mello Bandeira & Mariane Gonzalez da Costa & George Vasconcelos Goes & Tássia Faria de Assis & Márcio de Almeida D’Agosto & Isabela Rocha Pombo Le, 2020. "A Multitier Approach to Estimating the Energy Efficiency of Urban Passenger Mobility," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    3. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.
    4. Louis-Gaetan Giraudet & Céline Guivarch & Philippe Quirion, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Post-Print hal-00715345, HAL.
    5. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    6. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    7. Enrico Giglio & Ermando Petracca & Bruno Paduano & Claudio Moscoloni & Giuseppe Giorgi & Sergej Antonello Sirigu, 2023. "Estimating the Cost of Wave Energy Converters at an Early Design Stage: A Bottom-Up Approach," Sustainability, MDPI, vol. 15(8), pages 1-39, April.
    8. DeCarolis, Joseph & Daly, Hannah & Dodds, Paul & Keppo, Ilkka & Li, Francis & McDowall, Will & Pye, Steve & Strachan, Neil & Trutnevyte, Evelina & Usher, Will & Winning, Matthew & Yeh, Sonia & Zeyring, 2017. "Formalizing best practice for energy system optimization modelling," Applied Energy, Elsevier, vol. 194(C), pages 184-198.
    9. Clinch, J. Peter & Healy, John D., 2003. "Valuing improvements in comfort from domestic energy-efficiency retrofits using a trade-off simulation model," Energy Economics, Elsevier, vol. 25(5), pages 565-583, September.
    10. Park, Sang Yong & Yun, Bo-Yeong & Yun, Chang Yeol & Lee, Duk Hee & Choi, Dong Gu, 2016. "An analysis of the optimum renewable energy portfolio using the bottom–up model: Focusing on the electricity generation sector in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 319-329.
    11. Rob Dellink & Ekko van Ierland, 2004. "Pollution Abatement in the Netherlands: A Dynamic Applied General Equilibrium Assessment," Working Papers 2004.74, Fondazione Eni Enrico Mattei.
    12. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    13. Koopmans, Carl C. & te Velde, Dirk Willem, 2001. "Bridging the energy efficiency gap: using bottom-up information in a top-down energy demand model," Energy Economics, Elsevier, vol. 23(1), pages 57-75, January.
    14. Boonekamp, Piet G.M., 2006. "Actual interaction effects between policy measures for energy efficiency—A qualitative matrix method and quantitative simulation results for households," Energy, Elsevier, vol. 31(14), pages 2848-2873.
    15. Pandey, Rahul, 2002. "Energy policy modelling: agenda for developing countries," Energy Policy, Elsevier, vol. 30(2), pages 97-106, January.
    16. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    17. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    18. Jaccard, Mark & Loulou, Richard & Kanudia, Amit & Nyboer, John & Bailie, Alison & Labriet, Maryse, 2003. "Methodological contrasts in costing greenhouse gas abatement policies: Optimization and simulation modeling of micro-economic effects in Canada," European Journal of Operational Research, Elsevier, vol. 145(1), pages 148-164, February.
    19. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    20. Kverndokk,S. & Rosendahl,E., 2000. "CO2 mitigation costs and ancillary benefits in the Nordic countries, the UK and Ireland : a survey," Memorandum 34/2000, Oslo University, Department of Economics.
    21. Chris Bataille, Mark Jaccard, John Nyboer and Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-112.
    22. Ioannis Pappis & Andreas Sahlberg & Tewodros Walle & Oliver Broad & Elusiyan Eludoyin & Mark Howells & Will Usher, 2021. "Influence of Electrification Pathways in the Electricity Sector of Ethiopia—Policy Implications Linking Spatial Electrification Analysis and Medium to Long-Term Energy Planning," Energies, MDPI, vol. 14(4), pages 1-36, February.
    23. Klinge Jacobsen, Henrik, 1999. "Taxing CO2 and subsidising biomass. Analysed in a macroeconomic and sectoral model," MPRA Paper 43495, University Library of Munich, Germany.
    24. Henrik Klinge Jacobsen, 2000. "Technology Diffusion in Energy-Economy Models: The Case of Danish Vintage Models," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 43-71.
    25. Seunghun Joh & Yun-Mi Nam & ShangGyoo Shim & Joohon Sung & Youngchul Shin, 2003. "Empirical study of environmental ancillary benefits due to greenhouse gas mitigation in Korea," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 6(3), pages 311-327.
    26. Krook-Riekkola, Anna & Berg, Charlotte & Ahlgren, Erik O. & Söderholm, Patrik, 2017. "Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model," Energy, Elsevier, vol. 141(C), pages 803-817.
    27. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    28. Wu, Pei-Ing & Chen, Chai Tzu & Liou, Je-Liang, 2013. "The meta-technology cost ratio: An indicator for judging the cost performance of CO2 reduction," Economic Modelling, Elsevier, vol. 35(C), pages 1-9.
    29. Rivers, Nic & Jaccard, Mark, 2006. "Useful models for simulating policies to induce technological change," Energy Policy, Elsevier, vol. 34(15), pages 2038-2047, October.
    30. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    31. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    32. Jaccard, Mark & Murphy, Rose & Rivers, Nic, 2004. "Energy-environment policy modeling of endogenous technological change with personal vehicles: combining top-down and bottom-up methods," Ecological Economics, Elsevier, vol. 51(1-2), pages 31-46, November.
    33. Md Mijanur Rahman & Mohammad Shakeri & Sieh Kiong Tiong & Fatema Khatun & Nowshad Amin & Jagadeesh Pasupuleti & Mohammad Kamrul Hasan, 2021. "Prospective Methodologies in Hybrid Renewable Energy Systems for Energy Prediction Using Artificial Neural Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    34. Theodoridou, Ifigeneia & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "A feasibility evaluation tool for sustainable cities – A case study for Greece," Energy Policy, Elsevier, vol. 44(C), pages 207-216.
    35. Gi-Young Chae & Seung-Hyun An & Chul-Yong Lee, 2021. "Demand Forecasting for Liquified Natural Gas Bunkering by Country and Region Using Meta-Analysis and Artificial Intelligence," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    36. Graham, Paul W. & Williams, David J., 2003. "Optimal technological choices in meeting Australian energy policy goals," Energy Economics, Elsevier, vol. 25(6), pages 691-712, November.
    37. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    38. Ignaciuk, Adriana M. & Dellink, Rob B., 2006. "Biomass and multi-product crops for agricultural and energy production--an AGE analysis," Energy Economics, Elsevier, vol. 28(3), pages 308-325, May.
    39. da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
    40. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    41. Wu, Pei-Ing & Chen, Chai Tzu & Cheng, Pei-Ching & Liou, Je-Liang, 2014. "Climate game analyses for CO2 emission trading among various world organizations," Economic Modelling, Elsevier, vol. 36(C), pages 441-446.
    42. Lee, Chul-Yong & Huh, Sung-Yoon, 2017. "Forecasting new and renewable energy supply through a bottom-up approach: The case of South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 207-217.
    43. Cao, Jing & Ho, Mun & Jorgenson, Dale, 2008. "“Co-benefits†of Greenhouse Gas Mitigation Policies in China: An Integrated Top-Down and Bottom-Up Modeling Analysis," RFF Working Paper Series dp-08-10-efd, Resources for the Future.
    44. Eoin Ó Broin & Érika Mata & Jonas Nässén & Filip Johnsson, 2015. "Quantification of the Energy Efficiency Gap in the Swedish Residential Sector," Post-Print hal-01219283, HAL.
    45. Murphy, Rose & Jaccard, Mark, 2011. "Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US," Energy Policy, Elsevier, vol. 39(11), pages 7146-7155.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.