IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v65y2014icp359-368.html
   My bibliography  Save this article

Measuring the financial impact of demand response for electricity retailers

Author

Listed:
  • Feuerriegel, Stefan
  • Neumann, Dirk

Abstract

Due to the integration of intermittent resources of power generation such as wind and solar, the amount of supplied electricity will exhibit unprecedented fluctuations. Electricity retailers can partially meet the challenge of matching demand and volatile supply by shifting power demand according to the fluctuating supply side. The necessary technology infrastructure such as Advanced Metering Infrastructures for this so-called Demand Response (DR) has advanced. However, little is known about the economic dimension and further effort is strongly needed to realistically quantify the financial impact. To succeed in this goal, we derive an optimization problem that minimizes procurement costs of an electricity retailer in order to control Demand Response usage. The evaluation with historic data shows that cost volatility can be reduced by 7.74%; peak costs drop by 14.35%; and expenditures of retailers can be significantly decreased by 3.52%.

Suggested Citation

  • Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
  • Handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:359-368
    DOI: 10.1016/j.enpol.2013.10.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151301032X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.10.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klinge Jacobsen, Henrik & Zvingilaite, Erika, 2010. "Reducing the market impact of large shares of intermittent energy in Denmark," Energy Policy, Elsevier, vol. 38(7), pages 3403-3413, July.
    2. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    3. Faruqui, Ahmad & Harris, Dan & Hledik, Ryan, 2010. "Unlocking the [euro]53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment," Energy Policy, Elsevier, vol. 38(10), pages 6222-6231, October.
    4. Luis Olmos & Sophia Ruester & Siok Jen Liong & Jean-Michel Glachant, 2010. "Energy Efficiency Actions Related to the Rollout of Smart Meters for Small Consumers," RSCAS Working Papers 2010/02fsr, European University Institute.
    5. Hirst, Eric, 1994. "Effects of utility demand-side management programs on uncertainty," Resource and Energy Economics, Elsevier, vol. 16(1), pages 25-45, March.
    6. Kamerschen, David R. & Porter, David V., 2004. "The demand for residential, industrial and total electricity, 1973-1998," Energy Economics, Elsevier, vol. 26(1), pages 87-100, January.
    7. Walawalkar, Rahul & Fernands, Stephen & Thakur, Netra & Chevva, Konda Reddy, 2010. "Evolution and current status of demand response (DR) in electricity markets: Insights from PJM and NYISO," Energy, Elsevier, vol. 35(4), pages 1553-1560.
    8. Chao, Hung-po, 2011. "Efficient pricing and investment in electricity markets with intermittent resources," Energy Policy, Elsevier, vol. 39(7), pages 3945-3953, July.
    9. Hirst, Eric, 1992. "Quantifying tradeoffs between costs and prices in utility DSM programs," The Electricity Journal, Elsevier, vol. 5(4), pages 16-24, May.
    10. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(1), pages 65-81, April.
    11. Olmos, Luis & Ruester, Sophia & Liong, Siok-Jen & Glachant, Jean-Michel, 2011. "Energy efficiency actions related to the rollout of smart meters for small consumers, application to the Austrian system," Energy, Elsevier, vol. 36(7), pages 4396-4409.
    12. Grünewald, Philipp & Torriti, Jacopo, 2013. "Demand response from the non-domestic sector: Early UK experiences and future opportunities," Energy Policy, Elsevier, vol. 61(C), pages 423-429.
    13. Valenzuela, Jorge & Thimmapuram, Prakash R. & Kim, Jinho, 2012. "Modeling and simulation of consumer response to dynamic pricing with enabled technologies," Applied Energy, Elsevier, vol. 96(C), pages 122-132.
    14. Bierbrauer, Michael & Menn, Christian & Rachev, Svetlozar T. & Truck, Stefan, 2007. "Spot and derivative pricing in the EEX power market," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3462-3485, November.
    15. Filippini, Massimo, 1995. "Swiss residential demand for electricity by time-of-use," Resource and Energy Economics, Elsevier, vol. 17(3), pages 281-290, November.
    16. Bernard, Jean-Thomas & Bolduc, Denis & Yameogo, Nadège-Désirée, 2011. "A pseudo-panel data model of household electricity demand," Resource and Energy Economics, Elsevier, vol. 33(1), pages 315-325, January.
    17. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    18. Dave, Saraansh & Sooriyabandara, Mahesh & Yearworth, Mike, 2013. "System behaviour modelling for demand response provision in a smart grid," Energy Policy, Elsevier, vol. 61(C), pages 172-181.
    19. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    20. Weber, Christoph, 2010. "Adequate intraday market design to enable the integration of wind energy into the European power systems," Energy Policy, Elsevier, vol. 38(7), pages 3155-3163, July.
    21. Garcia-Cerrutti, L. Miguel, 2000. "Estimating elasticities of residential energy demand from panel county data using dynamic random variables models with heteroskedastic and correlated error terms," Resource and Energy Economics, Elsevier, vol. 22(4), pages 355-366, October.
    22. Gyamfi, Samuel & Krumdieck, Susan & Urmee, Tania, 2013. "Residential peak electricity demand response—Highlights of some behavioural issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 71-77.
    23. Lujano-Rojas, Juan M. & Monteiro, Cláudio & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimum residential load management strategy for real time pricing (RTP) demand response programs," Energy Policy, Elsevier, vol. 45(C), pages 671-679.
    24. Shaw, Rita & Attree, Mike & Jackson, Tim & Kay, Mike, 2009. "The value of reducing distribution losses by domestic load-shifting: a network perspective," Energy Policy, Elsevier, vol. 37(8), pages 3159-3167, August.
    25. Faruqui, A. & Hajos, A. & Hledik, R.M. & Newell, S.A., 2010. "Fostering economic demand response in the Midwest ISO," Energy, Elsevier, vol. 35(4), pages 1544-1552.
    26. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    27. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    28. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    29. Milstein, Irena & Tishler, Asher, 2011. "Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market," Energy Policy, Elsevier, vol. 39(7), pages 3922-3927, July.
    30. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feuerriegel, Stefan & Neumann, Dirk, 2016. "Integration scenarios of Demand Response into electricity markets: Load shifting, financial savings and policy implications," Energy Policy, Elsevier, vol. 96(C), pages 231-240.
    2. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    3. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    4. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    5. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    6. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    7. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    8. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    9. David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
    10. Li, Lanlan & Gong, Chengzhu & Wang, Deyun & Zhu, Kejun, 2013. "Multi-agent simulation of the time-of-use pricing policy in an urban natural gas pipeline network: A case study of Zhengzhou," Energy, Elsevier, vol. 52(C), pages 37-43.
    11. Torriti, Jacopo, 2013. "The significance of occupancy steadiness in residential consumer response to Time-of-Use pricing: Evidence from a stochastic adjustment model," Utilities Policy, Elsevier, vol. 27(C), pages 49-56.
    12. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    13. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    14. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    15. Lilian de Menezes & Melanie A. Houllier, 2013. "Modelling Germany´s Energy Transition and its Potential Effect on European Electricity Spot Markets," EcoMod2013 5395, EcoMod.
    16. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    17. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).
    18. He, Xian & Keyaerts, Nico & Azevedo, Isabel & Meeus, Leonardo & Hancher, Leigh & Glachant, Jean-Michel, 2013. "How to engage consumers in demand response: A contract perspective," Utilities Policy, Elsevier, vol. 27(C), pages 108-122.
    19. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.
    20. Jacopo Torriti & Philipp Grunewald, 2014. "Demand Side Response: Patterns in Europe and Future Policy Perspectives under Capacity Mechanisms," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:65:y:2014:i:c:p:359-368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.