IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp727-738.html
   My bibliography  Save this article

The German incentive regulation and its practical impact on the grid integration of renewable energy systems

Author

Listed:
  • Matschoss, Patrick
  • Bayer, Benjamin
  • Thomas, Heiko
  • Marian, Adela

Abstract

This paper investigates the interplay between the German incentive regulation and renewable capacity integration. A comprehensive review of the current incentive regulation scheme and its 2016 amendment is first presented. Then, results of ten representative interviews with large-scale distribution system operators are analyzed. Firstly, all necessary grid integration measures could so far be implemented. Secondly, creating proper incentives for intelligent operating equipment to partly substitute conventional grid expansion remains a challenge. Thirdly, the new curtailment regulation of 2016 is welcome, but will not become a substitute for grid expansion as long as renewable integration rates are high. Moreover, the discussions on further improvements to the incentive regulation scheme reveal a distribution conflict between grid operators and grid users.

Suggested Citation

  • Matschoss, Patrick & Bayer, Benjamin & Thomas, Heiko & Marian, Adela, 2019. "The German incentive regulation and its practical impact on the grid integration of renewable energy systems," Renewable Energy, Elsevier, vol. 134(C), pages 727-738.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:727-738
    DOI: 10.1016/j.renene.2018.10.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joskow Paul L., 2008. "Incentive Regulation and Its Application to Electricity Networks," Review of Network Economics, De Gruyter, vol. 7(4), pages 1-14, December.
    2. Cullmann, Astrid & Nieswand, Maria, 2016. "Regulation and investment incentives in electricity distribution: An empirical assessment," Energy Economics, Elsevier, vol. 57(C), pages 192-203.
    3. Kinnunen, Kaisa, 2005. "Pricing of electricity distribution: an empirical efficiency study in Finland, Norway and Sweden," Utilities Policy, Elsevier, vol. 13(1), pages 15-25, March.
    4. Ropenus, Stephanie & Jacobsen, Henrik Klinge & Schröder, Sascha Thorsten, 2011. "Network regulation and support schemes – How policy interactions affect the integration of distributed generation," Renewable Energy, Elsevier, vol. 36(7), pages 1949-1956.
    5. Balazs Egert, 2009. "Infrastructure investment in network industries: The role of incentive regulation and regulatory independence," William Davidson Institute Working Papers Series wp956, William Davidson Institute at the University of Michigan.
    6. Carlo Cambini & Laura Rondi, 2010. "Incentive regulation and investment: evidence from European energy utilities," Journal of Regulatory Economics, Springer, vol. 38(1), pages 1-26, August.
    7. Agrell, Per J. & Grifell-Tatjé, Emili, 2016. "A dynamic model for firm-response to non-credible incentive regulation regimes," Energy Policy, Elsevier, vol. 90(C), pages 287-299.
    8. Bayer, Benjamin & Matschoss, Patrick & Thomas, Heiko & Marian, Adela, 2018. "The German experience with integrating photovoltaic systems into the low-voltage grids," Renewable Energy, Elsevier, vol. 119(C), pages 129-141.
    9. Nykamp, Stefan & Andor, Mark & Hurink, Johann L., 2012. "‘Standard’ incentive regulation hinders the integration of renewable energy generation," Energy Policy, Elsevier, vol. 47(C), pages 222-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. López González, Diana María & Garcia Rendon, John, 2022. "Opportunities and challenges of mainstreaming distributed energy resources towards the transition to more efficient and resilient energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Oduro, Richard A. & Taylor, Peter G., 2023. "Future pathways for energy networks: A review of international experiences in high income countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Dierk Bauknecht & Allan Dahl Andersen & Karoline Dunne, 2020. "Challenges for electricity network governance in Energy transitions: Insights from Norway," Working Papers on Innovation Studies 20200115, Centre for Technology, Innovation and Culture, University of Oslo.
    4. Radpour, S. & Gemechu, E. & Ahiduzzaman, Md & Kumar, A., 2021. "Developing a framework to assess the long-term adoption of renewable energy technologies in the electric power sector: The effects of carbon price and economic incentives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Yaser Sobhanifard & Seyed Mohammad Saleh Hashemi Apourvari, 2022. "Environmental sustainable development through modeling and ranking of influential factors of reference groups on consumer behavior of green products: The case of Iran," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(5), pages 1294-1312, October.
    6. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment," Renewable Energy, Elsevier, vol. 173(C), pages 972-986.
    7. Atherton, John & Hofmeister, Markus & Mosbach, Sebastian & Akroyd, Jethro & Farazi, Feroz & Kraft, Markus, 2023. "British imbalance market paradox: Variable renewable energy penetration in energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Perez, Alex & Garcia-Rendon, John J., 2021. "Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia," Renewable Energy, Elsevier, vol. 167(C), pages 146-161.
    9. Serhat Yüksel & Hasan Dinçer & Yurdagül Meral, 2019. "Financial Analysis of International Energy Trade: A Strategic Outlook for EU-15," Energies, MDPI, vol. 12(3), pages 1-22, January.
    10. Staudt, Philipp & Oren, Shmuel S., 2021. "Merchant transmission in single-price electricity markets with cost-based redispatch," Energy Economics, Elsevier, vol. 104(C).
    11. Andrea Frazzica & Vincenza Brancato & Belal Dawoud, 2020. "Unified Methodology to Identify the Potential Application of Seasonal Sorption Storage Technology," Energies, MDPI, vol. 13(5), pages 1-17, February.
    12. Daniel Then & Patrick Hein & Tanja M. Kneiske & Martin Braun, 2020. "Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions," Sustainability, MDPI, vol. 12(13), pages 1-42, July.
    13. Jesús Botero García & David Cardona Vásquez & John García Rendón, 2019. "Energy transition in Germany and integration of non-conventional energy sources," Documentos de Trabajo CIEF 17784, Universidad EAFIT.
    14. Diego F. Quintero Pulido & Marnix V. Ten Kortenaar & Johann L. Hurink & Gerard J.M. Smit, 2019. "The Role of Off-Grid Houses in the Energy Transition with a Case Study in the Netherlands," Energies, MDPI, vol. 12(10), pages 1-18, May.
    15. Chun Xia-Bauer & Florin Vondung & Stefan Thomas & Raphael Moser, 2022. "Business Model Innovations for Renewable Energy Prosumer Development in Germany," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    16. Meysam Shamshiri & Chin Kim Gan & Junainah Sardi & Mau Teng Au & Wei Hown Tee, 2020. "Design of Battery Storage System for Malaysia Low Voltage Distribution Network with the Presence of Residential Solar Photovoltaic System," Energies, MDPI, vol. 13(18), pages 1-20, September.
    17. Hasan Eroğlu, 2022. "Development of a novel solar energy need index for identifying priority investment regions: a case study and current status in Turkey," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8840-8855, June.
    18. Diana Enescu & Alessandro Ciocia & Udayanga I. K. Galappaththi & Harsha Wickramasinghe & Francesco Alagna & Angela Amato & Francisco Díaz-González & Filippo Spertino & Valeria Cocina, 2023. "Energy Tariff Policies for Renewable Energy Development: Comparison between Selected European Countries and Sri Lanka," Energies, MDPI, vol. 16(4), pages 1-26, February.
    19. Dincer, Hasan & Yuksel, Serhat, 2019. "Balanced scorecard-based analysis of investment decisions for the renewable energy alternatives: A comparative analysis based on the hybrid fuzzy decision-making approach," Energy, Elsevier, vol. 175(C), pages 1259-1270.
    20. José Miguel Paredes-Parra & Antonio Javier García-Sánchez & Antonio Mateo-Aroca & Ángel Molina-García, 2019. "An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management," Energies, MDPI, vol. 12(5), pages 1-20, March.
    21. Croonenbroeck, Carsten & Hennecke, David, 2020. "Does the German renewable energy act provide a fair incentive system for onshore wind power? — A simulation analysis," Energy Policy, Elsevier, vol. 144(C).
    22. Nolting, Lars & Schuller, Vanessa & Gaumnitz, Felix & Praktiknjo, Aaron, 2019. "Incentivizing timely investments in electrical grids: Analysis of the amendment of the German distribution grid regulation," Energy Policy, Elsevier, vol. 132(C), pages 754-763.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poudineh, Rahmatallah & Jamasb, Tooraj, 2016. "Determinants of investment under incentive regulation: The case of the Norwegian electricity distribution networks," Energy Economics, Elsevier, vol. 53(C), pages 193-202.
    2. Michael Hellwig & Dominik Schober & Luis Cabral, 2018. "Incentive Regulation: Evidence From German Electricity Networks," Working Papers 18-03, New York University, Leonard N. Stern School of Business, Department of Economics.
    3. Carlo Cambini & Raffaele Congiu & Golnoush Soroush, 2020. "Regulation, Innovation, and Systems Integration: Evidence from the EU," Energies, MDPI, vol. 13(7), pages 1-18, April.
    4. Anna Pechan, 2014. "Which Incentives Does Regulation Give to Adapt Network Infrastructure to Climate Change? - A German Case Study," Working Papers V-365-14, University of Oldenburg, Department of Economics, revised May 2014.
    5. Avdasheva, Svetlana & Orlova, Yulia, 2020. "Effects of long-term tariff regulation on investments under low credibility of rules: Rate-of-return and price cap in Russian electricity grids," Energy Policy, Elsevier, vol. 138(C).
    6. Brown, David P. & Sappington, David E. M., 2023. "Designing Incentive Regulation in the Electricity Sector," Working Papers 2023-10, University of Alberta, Department of Economics.
    7. Cambini, Carlo & Franzi, Donata, 2013. "Independent regulatory agencies and rules harmonization for the electricity sector and renewables in the Mediterranean region," Energy Policy, Elsevier, vol. 60(C), pages 179-191.
    8. Hellwig, Michael & Schober, Dominik & Cabral, Luís, 2020. "Low-powered vs high-powered incentives: Evidence from German electricity networks," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    9. Simona Benedettini & Federico Pontoni, "undated". "Electricity distribution investments: no country for old rules? A critical overview of UK and Italian regulations," IEFE Working Papers 50, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    10. Buchmann, Marius, 2017. "Governance of data and information management in smart distribution grids: Increase efficiency by balancing coordination and competition," Utilities Policy, Elsevier, vol. 44(C), pages 63-72.
    11. Laurens Cherchye & Bram De Rock & Antonio Estache & Marijn Verschelde, 2015. "Efficiency Measures in Regulated Industries: History, Outstanding Challenges and Emerging Solutions," Working Papers ECARES ECARES 2015-09, ULB -- Universite Libre de Bruxelles.
    12. Cullmann, Astrid & Nieswand, Maria, 2016. "Regulation and investment incentives in electricity distribution: An empirical assessment," Energy Economics, Elsevier, vol. 57(C), pages 192-203.
    13. Balázs Égert, 2021. "Investment in OECD Countries: a Primer," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 63(2), pages 200-223, June.
    14. Agrell, Per J. & Brea-Solís, Humberto, 2017. "Capturing heterogeneity in electricity distribution operations: A critical review of latent class modelling," Energy Policy, Elsevier, vol. 104(C), pages 361-372.
    15. Carlo Cambini & Elena Fumagalli & Laura Rondi, 2016. "Incentives to quality and investment: evidence from electricity distribution in Italy," Journal of Regulatory Economics, Springer, vol. 49(1), pages 1-32, February.
    16. Francisca Bremberger & Carlo Cambini & Klaus Gugler & Laura Rondi, 2013. "Dividend Policy in Regulated Firms," RSCAS Working Papers 2013/53, European University Institute.
    17. Bernardo Bortolotti & Carlo Cambini & Laura Rondi, 2011. "Regulatory Independence, Ownership and Firm Value: The Role of Political Institutions," RSCAS Working Papers 2011/43, European University Institute.
    18. Corton, Maria Luisa & Zimmermann, Aneliese & Phillips, Michelle Andrea, 2016. "The low cost of quality improvements in the electricity distribution sector of Brazil," Energy Policy, Elsevier, vol. 97(C), pages 485-493.
    19. Cambini, Carlo & Meletiou, Alexis & Bompard, Ettore & Masera, Marcelo, 2016. "Market and regulatory factors influencing smart-grid investment in Europe: Evidence from pilot projects and implications for reform," Utilities Policy, Elsevier, vol. 40(C), pages 36-47.
    20. Elvira Silva & Pedro Macedo & Isabel Soares, 2019. "Maximum entropy: a stochastic frontier approach for electricity distribution regulation," Journal of Regulatory Economics, Springer, vol. 55(3), pages 237-257, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:727-738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.