IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v128y2019icp402-410.html
   My bibliography  Save this article

Estimating the revenue potential of flexible biogas plants in the power sector

Author

Listed:
  • Lauven, Lars-Peter
  • Geldermann, Jutta
  • Desideri, Umberto

Abstract

The expansion of intermittent renewable power poses new challenges: Balancing fluctuations in power supply and demand requires additional flexibility. In this work, we model a unit commitment optimization problem to investigate the economic feasibility of concepts for flexible power generation from biogas. Because the economics of flexible power generation also depend on the availability of other flexibility options, we compared flexible biogas plants in power markets with different characteristics, namely Germany, northern Italy, and the islands of Sardinia and Sicily.

Suggested Citation

  • Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
  • Handle: RePEc:eee:enepol:v:128:y:2019:i:c:p:402-410
    DOI: 10.1016/j.enpol.2019.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519300072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    2. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes: A case study of the German market premium," UFZ Discussion Papers 4/2013, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    3. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    4. Ogayar, B. & Vidal, P.G. & Hernandez, J.C., 2009. "Analysis of the cost for the refurbishment of small hydropower plants," Renewable Energy, Elsevier, vol. 34(11), pages 2501-2509.
    5. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    6. Britz, Wolfgang & Delzeit, Ruth, 2013. "The impact of German biogas production on European and global agricultural markets, land use and the environment," Energy Policy, Elsevier, vol. 62(C), pages 1268-1275.
    7. Szarka, Nora & Scholwin, Frank & Trommler, Marcus & Fabian Jacobi, H. & Eichhorn, Marcus & Ortwein, Andreas & Thrän, Daniela, 2013. "A novel role for bioenergy: A flexible, demand-oriented power supply," Energy, Elsevier, vol. 61(C), pages 18-26.
    8. Antonelli, Marco & Desideri, Umberto, 2014. "The doping effect of Italian feed-in tariffs on the PV market," Energy Policy, Elsevier, vol. 67(C), pages 583-594.
    9. Tobias Heffels & Russell McKenna & Wolf Fichtner, 2012. "Direct marketing of electricity from biogas and biomethane: an economic analysis of several business models in Germany," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 23(1), pages 53-70, September.
    10. Hahn, Henning & Krautkremer, Bernd & Hartmann, Kilian & Wachendorf, Michael, 2014. "Review of concepts for a demand-driven biogas supply for flexible power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 383-393.
    11. Appel, Franziska & Ostermeyer-Wiethaup, Arlette & Balmann, Alfons, 2016. "Effects of the German Renewable Energy Act on structural change in agriculture – The case of biogas," Utilities Policy, Elsevier, vol. 41(C), pages 172-182.
    12. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    13. Papaefthymiou, G. & Dragoon, Ken, 2016. "Towards 100% renewable energy systems: Uncapping power system flexibility," Energy Policy, Elsevier, vol. 92(C), pages 69-82.
    14. Carrosio, Giovanni, 2013. "Energy production from biogas in the Italian countryside: Policies and organizational models," Energy Policy, Elsevier, vol. 63(C), pages 3-9.
    15. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    16. Skovsgaard, Lise & Jacobsen, Henrik Klinge, 2017. "Economies of scale in biogas production and the significance of flexible regulation," Energy Policy, Elsevier, vol. 101(C), pages 77-89.
    17. Jochem, Patrick & Schönfelder, Martin & Fichtner, Wolf, 2015. "An efficient two-stage algorithm for decentralized scheduling of micro-CHP units," European Journal of Operational Research, Elsevier, vol. 245(3), pages 862-874.
    18. Chinese, D. & Patrizio, P. & Nardin, G., 2014. "Effects of changes in Italian bioenergy promotion schemes for agricultural biogas projects: Insights from a regional optimization model," Energy Policy, Elsevier, vol. 75(C), pages 189-205.
    19. Bartoli, A. & Cavicchioli, D. & Kremmydas, D. & Rozakis, S. & Olper, A., 2016. "The impact of different energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy," Energy Policy, Elsevier, vol. 96(C), pages 351-363.
    20. Helms, Thorsten & Loock, Moritz & Bohnsack, René, 2016. "Timing-based business models for flexibility creation in the electric power sector," Energy Policy, Elsevier, vol. 92(C), pages 348-358.
    21. José L. Ceciliano-Meza & Juan Álvarez López & Armando De la Torre Sánchez & Rolando Nieva Gómez & Isaías Guillén Moya & Roberto Navarro Pérez & Favio Perales Martínez & César Torres Ruiz & Anselmo Sán, 2016. "Power System Operator in Mexico Reveals Millions in Savings by Updating Its Short-Term Thermal Unit Commitment Model," Interfaces, INFORMS, vol. 46(6), pages 493-502, December.
    22. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes—A case study of the German market premium," Energy Policy, Elsevier, vol. 61(C), pages 599-609.
    23. Ocker, Fabian & Ehrhart, Karl-Martin, 2017. "The “German Paradox” in the balancing power markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 892-898.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bedoić, Robert & Jurić, Filip & Ćosić, Boris & Pukšec, Tomislav & Čuček, Lidija & Duić, Neven, 2020. "Beyond energy crops and subsidised electricity – A study on sustainable biogas production and utilisation in advanced energy markets," Energy, Elsevier, vol. 201(C).
    2. Zhao Xin-gang & Wang Wei & Hu Shuran & Lu Wenjie, 2023. "How to Promote the Application of Biogas Power Technology: A Perspective of Incentive Policy," Energies, MDPI, vol. 16(4), pages 1-11, February.
    3. Stürmer, Bernhard & Theuretzbacher, Franz & Saracevic, Ervin, 2021. "Opportunities for the integration of existing biogas plants into the Austrian electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Guoliang Zhang & Suhua Lou & Yaowu Wu & Yang Wu & Xiangfeng Wen, 2020. "A New Commerce Operation Model for Integrated Energy System Containing the Utilization of Bio-Natural Gas," Energies, MDPI, vol. 13(24), pages 1-13, December.
    5. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    6. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Yiyun Liu & Tao Huang & Xiaofeng Li & Jingjing Huang & Daoping Peng & Claudia Maurer & Martin Kranert, 2020. "Experiments and Modeling for Flexible Biogas Production by Co-Digestion of Food Waste and Sewage Sludge," Energies, MDPI, vol. 13(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dotzauer, Martin & Pfeiffer, Diana & Lauer, Markus & Pohl, Marcel & Mauky, Eric & Bär, Katharina & Sonnleitner, Matthias & Zörner, Wilfried & Hudde, Jessica & Schwarz, Björn & Faßauer, Burkhardt & Dah, 2019. "How to measure flexibility – Performance indicators for demand driven power generation from biogas plants," Renewable Energy, Elsevier, vol. 134(C), pages 135-146.
    2. Yiyun Liu & Jun Wu & Jianjun Li & Jingjing Huang, 2023. "The Diffusion Rule of Demand-Oriented Biogas Supply in Distributed Renewable Energy System: An Evolutionary Game-Based Approach," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    3. Bartoli, Andrea & Hamelin, Lorie & Rozakis, Stelios & Borzęcka, Magdalena & Brandão, Miguel, 2019. "Coupling economic and GHG emission accounting models to evaluate the sustainability of biogas policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 133-148.
    4. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    5. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    6. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    7. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    8. Bartoli, A. & Cavicchioli, D. & Kremmydas, D. & Rozakis, S. & Olper, A., 2016. "The impact of different energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy," Energy Policy, Elsevier, vol. 96(C), pages 351-363.
    9. Mauro Lafratta & Matthew Leach & Rex B. Thorpe & Mark Willcocks & Eve Germain & Sabeha K. Ouki & Achame Shana & Jacquetta Lee, 2021. "Economic and Carbon Costs of Electricity Balancing Services: The Need for Secure Flexible Low-Carbon Generation," Energies, MDPI, vol. 14(16), pages 1-21, August.
    10. Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
    11. Ramos-Suárez, J.L. & Ritter, A. & Mata González, J. & Camacho Pérez, A., 2019. "Biogas from animal manure: A sustainable energy opportunity in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 137-150.
    12. Carsten Herbes & Lorenz Braun & Dennis Rube, 2016. "Pricing of Biomethane Products Targeted at Private Households in Germany—Product Attributes and Providers’ Pricing Strategies," Energies, MDPI, vol. 9(4), pages 1-15, March.
    13. Eugenio Demartini & Anna Gaviglio & Marco Gelati & Daniele Cavicchioli, 2016. "The Effect of Biogas Production on Farmland Rental Prices: Empirical Evidences from Northern Italy," Energies, MDPI, vol. 9(11), pages 1-23, November.
    14. Lauer, Markus & Leprich, Uwe & Thrän, Daniela, 2020. "Economic assessment of flexible power generation from biogas plants in Germany's future electricity system," Renewable Energy, Elsevier, vol. 146(C), pages 1471-1485.
    15. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    16. Giovanna Croxatto Vega & Juliën Voogt & Joshua Sohn & Morten Birkved & Stig Irving Olsen, 2020. "Assessing New Biotechnologies by Combining TEA and TM-LCA for an Efficient Use of Biomass Resources," Sustainability, MDPI, vol. 12(9), pages 1-35, May.
    17. Andante Hadi Pandyaswargo & Premakumara Jagath Dickella Gamaralalage & Chen Liu & Michael Knaus & Hiroshi Onoda & Faezeh Mahichi & Yanghui Guo, 2019. "Challenges and an Implementation Framework for Sustainable Municipal Organic Waste Management Using Biogas Technology in Emerging Asian Countries," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    18. Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Kyere, Isaac & Astor, Thomas & Graß, Rüdiger & Fricke, Thomas & Wachendorf, Michael, 2021. "Spatio-temporal analysis of the effects of biogas production on agricultural lands," Land Use Policy, Elsevier, vol. 102(C).
    20. Bartolini, Fabio & Gava, Oriana & Brunori, Gianluca, 2017. "Biogas and EU's 2020 targets: Evidence from a regional case study in Italy," Energy Policy, Elsevier, vol. 109(C), pages 510-519.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:128:y:2019:i:c:p:402-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.