IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3676-d353237.html
   My bibliography  Save this article

Assessing New Biotechnologies by Combining TEA and TM-LCA for an Efficient Use of Biomass Resources

Author

Listed:
  • Giovanna Croxatto Vega

    (DTU Management, Department of Technology, Management and Economics, Technical University of Denmark, Akademivej, Bld. 358, DK-2800 Kgs. Lyngby, Denmark)

  • Juliën Voogt

    (Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands)

  • Joshua Sohn

    (DTU Management, Department of Technology, Management and Economics, Technical University of Denmark, Akademivej, Bld. 358, DK-2800 Kgs. Lyngby, Denmark)

  • Morten Birkved

    (Institute of Chemical Engineering, Biotechnology and Environmental Technology, The University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark)

  • Stig Irving Olsen

    (DTU Management, Department of Technology, Management and Economics, Technical University of Denmark, Akademivej, Bld. 358, DK-2800 Kgs. Lyngby, Denmark)

Abstract

An efficient use of biomass resources is a key element of the bioeconomy. Ideally, options leading to the highest environmental and economic gains can be singled out for any given region. In this study, to achieve this goal of singling out an ideal technology for a given region, biotechnologies are assessed by a combination of techno-economic assessment (TEA) and territorial metabolism life cycle assessment (TM-LCA). Three technology variations for anaerobic digestion (AD) were assessed at two different scales (200 kW and 1 MW) and for two different regions. First, sustainable feedstock availability for two European regions was quantified. Then, the environmental impact and economic potential of each technology when scaled up to the regional level, considering all of the region’s unique sustainably available feedstock, was investigated. Multiple criteria decision analysis and internalized damage monetization were used to generate single scores for the assessments. Preference for the technology scenario producing the most energy was shown for all regions and scales, while producing bioplastic was less preferable since the value of the produced bioplastic plastic was not great enough to offset the resultant reduction in energy production. Assessing alternatives in a regional context provided valuable information about the influence of different types of feedstock on environmental performance.

Suggested Citation

  • Giovanna Croxatto Vega & Juliën Voogt & Joshua Sohn & Morten Birkved & Stig Irving Olsen, 2020. "Assessing New Biotechnologies by Combining TEA and TM-LCA for an Efficient Use of Biomass Resources," Sustainability, MDPI, vol. 12(9), pages 1-35, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3676-:d:353237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3676/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3676/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    2. Hamelin, Lorie & Borzęcka, Magdalena & Kozak, Małgorzata & Pudełko, Rafał, 2019. "A spatial approach to bioeconomy: Quantifying the residual biomass potential in the EU-27," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 127-142.
    3. Appel, Franziska & Ostermeyer-Wiethaup, Arlette & Balmann, Alfons, 2016. "Effects of the German Renewable Energy Act on structural change in agriculture – The case of biogas," Utilities Policy, Elsevier, vol. 41(C), pages 172-182.
    4. Scarlat, Nicolae & Dallemand, Jean-François & Fahl, Fernando, 2018. "Biogas: Developments and perspectives in Europe," Renewable Energy, Elsevier, vol. 129(PA), pages 457-472.
    5. Bojesen, M. & Birkin, M. & Clarke, G., 2014. "Spatial competition for biogas production using insights from retail location models," Energy, Elsevier, vol. 68(C), pages 617-628.
    6. Bartoli, A. & Cavicchioli, D. & Kremmydas, D. & Rozakis, S. & Olper, A., 2016. "The impact of different energy policy options on feedstock price and land demand for maize silage: The case of biogas in Lombardy," Energy Policy, Elsevier, vol. 96(C), pages 351-363.
    7. Joshua Sohn & Pierre Bisquert & Patrice Buche & Abdelraouf Hecham & Pradip P. Kalbar & Ben Goldstein & Morten Birkved & Stig Irving Olsen, 2020. "Argumentation Corrected Context Weighting-Life Cycle Assessment: A Practical Method of Including Stakeholder Perspectives in Multi-Criteria Decision Support for LCA," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    8. Scarlat, Nicolae & Dallemand, Jean-François & Monforti-Ferrario, Fabio & Banja, Manjola & Motola, Vincenzo, 2015. "Renewable energy policy framework and bioenergy contribution in the European Union – An overview from National Renewable Energy Action Plans and Progress Reports," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 969-985.
    9. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    10. Giovanna Croxatto Vega & Joshua Sohn & Sander Bruun & Stig Irving Olsen & Morten Birkved, 2019. "Maximizing Environmental Impact Savings Potential through Innovative Biorefinery Alternatives: An Application of the TM-LCA Framework for Regional Scale Impact Assessment," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    11. Hijazi, O. & Munro, S. & Zerhusen, B. & Effenberger, M., 2016. "Review of life cycle assessment for biogas production in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1291-1300.
    12. Weidema, Bo Pedersen, 2009. "Using the budget constraint to monetarise impact assessment results," Ecological Economics, Elsevier, vol. 68(6), pages 1591-1598, April.
    13. Monforti, F. & Lugato, E. & Motola, V. & Bodis, K. & Scarlat, N. & Dallemand, J.-F., 2015. "Optimal energy use of agricultural crop residues preserving soil organic carbon stocks in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 519-529.
    14. Ólafur Ögmundarson & Markus J. Herrgård & Jochen Forster & Michael Z. Hauschild & Peter Fantke, 2020. "Addressing environmental sustainability of biochemicals," Nature Sustainability, Nature, vol. 3(3), pages 167-174, March.
    15. Pehnt, Martin, 2006. "Dynamic life cycle assessment (LCA) of renewable energy technologies," Renewable Energy, Elsevier, vol. 31(1), pages 55-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Karras & André Brosowski & Daniela Thrän, 2022. "A Review on Supply Costs and Prices of Residual Biomass in Techno-Economic Models for Europe," Sustainability, MDPI, vol. 14(12), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soha, Tamás & Papp, Luca & Csontos, Csaba & Munkácsy, Béla, 2021. "The importance of high crop residue demand on biogas plant site selection, scaling and feedstock allocation – A regional scale concept in a Hungarian study area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Alberto Benato & Alarico Macor, 2021. "Costs to Reduce the Human Health Toxicity of Biogas Engine Emissions," Energies, MDPI, vol. 14(19), pages 1-17, October.
    3. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    4. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    5. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    6. Kamila Klimek & Magdalena Kapłan & Serhiy Syrotyuk & Nikolay Bakach & Nikolay Kapustin & Ryszard Konieczny & Jakub Dobrzyński & Kinga Borek & Dorota Anders & Barbara Dybek & Agnieszka Karwacka & Grzeg, 2021. "Investment Model of Agricultural Biogas Plants for Individual Farms in Poland," Energies, MDPI, vol. 14(21), pages 1-30, November.
    7. Alarico Macor & Alberto Benato, 2020. "Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health," Energies, MDPI, vol. 13(5), pages 1-38, February.
    8. Zhu, Tong & Curtis, John & Clancy, Matthew, 2019. "Promoting agricultural biogas and biomethane production: Lessons from cross-country studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    9. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    10. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    11. Elena Tamburini & Mattias Gaglio & Giuseppe Castaldelli & Elisa Anna Fano, 2020. "Is Bioenergy Truly Sustainable When Land-Use-Change (LUC) Emissions Are Accounted for? The Case-Study of Biogas from Agricultural Biomass in Emilia-Romagna Region, Italy," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    12. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    13. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    14. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    15. Bedoić, Robert & Jurić, Filip & Ćosić, Boris & Pukšec, Tomislav & Čuček, Lidija & Duić, Neven, 2020. "Beyond energy crops and subsidised electricity – A study on sustainable biogas production and utilisation in advanced energy markets," Energy, Elsevier, vol. 201(C).
    16. Cord-Friedrich von Hobe & Marius Michels & Oliver Musshoff, 2021. "German Farmers’ Perspectives on Price Drivers in Agricultural Land Rental Markets—A Combination of a Systematic Literature Review and Survey Results," Land, MDPI, vol. 10(2), pages 1-22, February.
    17. Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
    18. Xueqing Yang & Yang Liu & Mei Wang & Alberto Bezama & Daniela Thrän, 2021. "Identifying the Necessities of Regional-Based Analysis to Study Germany’s Biogas Production Development under Energy Transition," Land, MDPI, vol. 10(2), pages 1-20, February.
    19. Bartoli, Andrea & Hamelin, Lorie & Rozakis, Stelios & Borzęcka, Magdalena & Brandão, Miguel, 2019. "Coupling economic and GHG emission accounting models to evaluate the sustainability of biogas policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 133-148.
    20. Riccardo Basosi & Roberto Bonciani & Dario Frosali & Giampaolo Manfrida & Maria Laura Parisi & Franco Sansone, 2020. "Life Cycle Analysis of a Geothermal Power Plant: Comparison of the Environmental Performance with Other Renewable Energy Systems," Sustainability, MDPI, vol. 12(7), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3676-:d:353237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.