IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v141y2021ics1364032121000794.html
   My bibliography  Save this article

Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook

Author

Listed:
  • Parvez, Ashak Mahmud
  • Lewis, Jonathan David
  • Afzal, Muhammad T.

Abstract

Climate change from carbon emissions and rising energy demands poses a serious threat to global sustainability. This issue is particularly noticeable in Canada where per capita energy demands are high and fossil fuels are used. Industrial hemp can be used for bioenergy production as an alternative to fossil fuels to capture and utilize carbon, with applications in various markets at high values. Despite this, industrial hemp has faced legal barriers that have hampered its viability. This review describes industrial hemp, its status in global markets, its performance as bioenergy feedstock, and potential in Canada, so research can target gaps in available knowledge. Numerous bioenergy applications for industrial hemp exist; the production of bioethanol and biodiesel from industrial hemp has strong potential to reduce greenhouse gas emissions and improve the Canadian economy. The current study found that industrial hemp can compete with many energy crops in global markets as a feedstock for many bioenergy products with solid hemp yielding 100 GJ/ha/y, allowing for economical emissions reductions for example in coal/biochar blends that can reduce emissions by 10%, and in co-production of bioethanol and grain, generating $2632/ha/y. This work also suggests industrial hemp has unique potential for growth in Canada, though processing facilities are severely lacking, and hemp growing has some negative environmental impacts related to fertilizer use. Responsible growth could be realized through incentivizing or subsidizing processing facility investment, implementing co-production where possible, and funding research to improve conversion, harvesting and polygeneration processes.

Suggested Citation

  • Parvez, Ashak Mahmud & Lewis, Jonathan David & Afzal, Muhammad T., 2021. "Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000794
    DOI: 10.1016/j.rser.2021.110784
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121000794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Chun-Min & Wu, Shu-Yii, 2016. "From biomass waste to biofuels and biomaterial building blocks," Renewable Energy, Elsevier, vol. 96(PB), pages 1056-1062.
    2. Lauer, Markus & Thrän, Daniela, 2017. "Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system?," Energy Policy, Elsevier, vol. 109(C), pages 324-336.
    3. Donfouet, Hermann Pythagore Pierre & Barczak, Aleksandra & Détang-Dessendre, Cécile & Maigné, Elise, 2017. "Crop Production and Crop Diversity in France: A Spatial Analysis," Ecological Economics, Elsevier, vol. 134(C), pages 29-39.
    4. Rajbongshi, Rumi & Borgohain, Devashree & Mahapatra, Sadhan, 2017. "Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER," Energy, Elsevier, vol. 126(C), pages 461-474.
    5. Ahmad, Farah B. & Zhang, Zhanying & Doherty, William O.S. & O'Hara, Ian M., 2019. "The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 386-411.
    6. Morales, Marjorie & Quintero, Julián & Conejeros, Raúl & Aroca, Germán, 2015. "Life cycle assessment of lignocellulosic bioethanol: Environmental impacts and energy balance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1349-1361.
    7. Matzenberger, Julian & Kranzl, Lukas & Tromborg, Eric & Junginger, Martin & Daioglou, Vassilis & Sheng Goh, Chun & Keramidas, Kimon, 2015. "Future perspectives of international bioenergy trade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 926-941.
    8. Wilk, Małgorzata & Magdziarz, Aneta, 2017. "Hydrothermal carbonization, torrefaction and slow pyrolysis of Miscanthus giganteus," Energy, Elsevier, vol. 140(P1), pages 1292-1304.
    9. Roy, Murari Mohon & Corscadden, Kenny W., 2012. "An experimental study of combustion and emissions of biomass briquettes in a domestic wood stove," Applied Energy, Elsevier, vol. 99(C), pages 206-212.
    10. Wang, Ning & Ren, Yixin & Zhu, Tao & Meng, Fanxin & Wen, Zongguo & Liu, Gengyuan, 2018. "Life cycle carbon emission modelling of coal-fired power: Chinese case," Energy, Elsevier, vol. 162(C), pages 841-852.
    11. Liu, Lirong & Huang, Charley Z. & Huang, Guohe & Baetz, Brian & Pittendrigh, Scott M., 2018. "How a carbon tax will affect an emission-intensive economy: A case study of the Province of Saskatchewan, Canada," Energy, Elsevier, vol. 159(C), pages 817-826.
    12. Ingrao, Carlo & Lo Giudice, Agata & Bacenetti, Jacopo & Tricase, Caterina & Dotelli, Giovanni & Fiala, Marco & Siracusa, Valentina & Mbohwa, Charles, 2015. "Energy and environmental assessment of industrial hemp for building applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 29-42.
    13. Kirtika Kohli & Ravindra Prajapati & Brajendra K. Sharma, 2019. "Bio-Based Chemicals from Renewable Biomass for Integrated Biorefineries," Energies, MDPI, vol. 12(2), pages 1-40, January.
    14. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    15. Finnan, John & Styles, David, 2013. "Hemp: A more sustainable annual energy crop for climate and energy policy," Energy Policy, Elsevier, vol. 58(C), pages 152-162.
    16. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    17. T. Randall Fortenbery & Michael Bennett, 2004. "Opportunities for Commercial Hemp Production," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 26(1), pages 97-117.
    18. Xaquin Acosta Casas & Joan Rieradevall i Pons, 2005. "Environmental analysis of the energy use of hemp – analysis of the comparative life cycle: diesel oil vs. hemp–diesel," International Journal of Agricultural Resources, Governance and Ecology, Inderscience Enterprises Ltd, vol. 4(2), pages 133-139.
    19. Azizi, Kolsoom & Keshavarz Moraveji, Mostafa & Abedini Najafabadi, Hamed, 2018. "A review on bio-fuel production from microalgal biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3046-3059.
    20. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    21. Gong, Binlei, 2018. "Interstate competition in agriculture: Cheer or fear? Evidence from the United States and China," Food Policy, Elsevier, vol. 81(C), pages 37-47.
    22. Rehman, Muhammad Saif Ur & Rashid, Naim & Saif, Ameena & Mahmood, Tariq & Han, Jong-In, 2013. "Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 154-164.
    23. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    24. Xiang, Di & Lawley, Chad, 2019. "The impact of British Columbia's carbon tax on residential natural gas consumption," Energy Economics, Elsevier, vol. 80(C), pages 206-218.
    25. Appiah-Nkansah, Nana Baah & Li, Jun & Rooney, William & Wang, Donghai, 2019. "A review of sweet sorghum as a viable renewable bioenergy crop and its techno-economic analysis," Renewable Energy, Elsevier, vol. 143(C), pages 1121-1132.
    26. Papaefthymiou, G. & Dragoon, Ken, 2016. "Towards 100% renewable energy systems: Uncapping power system flexibility," Energy Policy, Elsevier, vol. 92(C), pages 69-82.
    27. Enagi, Ibrahim I. & Al-attab, K.A. & Zainal, Z.A., 2018. "Liquid biofuels utilization for gas turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 43-55.
    28. Veljković, Vlada B. & Biberdžić, Milan O. & Banković-Ilić, Ivana B. & Djalović, Ivica G. & Tasić, Marija B. & Nježić, Zvonko B. & Stamenković, Olivera S., 2018. "Biodiesel production from corn oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 531-548.
    29. Abdulkhani, Ali & Alizadeh, Peyman & Hedjazi, Sahab & Hamzeh, Yahya, 2017. "Potential of Soya as a raw material for a whole crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1269-1280.
    30. Nordborg, Maria & Berndes, Göran & Dimitriou, Ioannis & Henriksson, Annika & Mola-Yudego, Blas & Rosenqvist, Håkan, 2018. "Energy analysis of willow production for bioenergy in Sweden," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 473-482.
    31. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Jianwen Zhang & Jacob Cherian & Ashak Mahmud Parvez & Sarminah Samad & Muhammad Safdar Sial & Mohammad Athar Ali & Mohammed Arshad Khan, 2022. "Consequences of Sustainable Agricultural Productivity, Renewable Energy, and Environmental Decay: Recent Evidence from ASEAN Countries," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    3. Joohun Han & John N. Ng’ombe, 2023. "The relation between wheat, soybean, and hemp acreage: a Bayesian time series analysis," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-12, December.
    4. Moritz von Cossel, 2022. "How to Reintroduce Arable Crops after Growing Perennial Wild Plant Species Such as Common Tansy ( Tanacetum vulgare L.) for Biogas Production," Energies, MDPI, vol. 15(12), pages 1-11, June.
    5. Obed Quaicoe & Fafanyo Asiseh & Omoanghe S. Isikhuemhen, 2023. "Qualitative Analysis of Industrial Hemp Production, Markets, and Sustainability in North Carolina, United States," Agriculture, MDPI, vol. 13(4), pages 1-19, April.
    6. Eva Fauziah & Arthur Josias Simon Runturambi, 2023. "Pros and Cons of Medical Cannabis Legalization in Indonesia," Technium Social Sciences Journal, Technium Science, vol. 45(1), pages 343-352, July.
    7. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    8. Omid Norouzi & Animesh Dutta, 2022. "The Current Status and Future Potential of Biogas Production from Canada’s Organic Fraction Municipal Solid Waste," Energies, MDPI, vol. 15(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauven, Lars-Peter & Geldermann, Jutta & Desideri, Umberto, 2019. "Estimating the revenue potential of flexible biogas plants in the power sector," Energy Policy, Elsevier, vol. 128(C), pages 402-410.
    2. Trey Malone & Kevin Gomez, 2019. "Hemp in the United States: A Case Study of Regulatory Path Dependence," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 41(2), pages 199-214, June.
    3. Ahmed, Ashfaq & Abu Bakar, Muhammad S. & Azad, Abul K. & Sukri, Rahayu S. & Mahlia, Teuku Meurah Indra, 2018. "Potential thermochemical conversion of bioenergy from Acacia species in Brunei Darussalam: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3060-3076.
    4. Mariana Abreu & Luís Silva & Belina Ribeiro & Alice Ferreira & Luís Alves & Susana M. Paixão & Luísa Gouveia & Patrícia Moura & Florbela Carvalheiro & Luís C. Duarte & Ana Luisa Fernando & Alberto Rei, 2022. "Low Indirect Land Use Change (ILUC) Energy Crops to Bioenergy and Biofuels—A Review," Energies, MDPI, vol. 15(12), pages 1-68, June.
    5. Jane Kolodinsky & Hannah Lacasse & Katherine Gallagher, 2020. "Making Hemp Choices: Evidence from Vermont," Sustainability, MDPI, vol. 12(15), pages 1-15, August.
    6. Gigliola Ausiello & Luca Di Girolamo & Antonio Marano, 2019. "Sustainable Requalification: Hemp, Raw Earth, Sun, and Wind for Energy Strategies in a Case Study in Naples, Italy," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
    7. Lim, Mook Tzeng & Phan, Anh & Roddy, Dermot & Harvey, Adam, 2015. "Technologies for measurement and mitigation of particulate emissions from domestic combustion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 574-584.
    8. Lim, Chun Hsion & Lim, Steven & How, Bing Shen & Ng, Wendy Pei Qin & Ngan, Sue Lin & Leong, Wei Dong & Lam, Hon Loong, 2021. "A review of industry 4.0 revolution potential in a sustainable and renewable palm oil industry: HAZOP approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Demirci, Alpaslan & Akar, Onur & Ozturk, Zafer, 2022. "Technical-environmental-economic evaluation of biomass-based hybrid power system with energy storage for rural electrification," Renewable Energy, Elsevier, vol. 195(C), pages 1202-1217.
    10. Hamid, M. Fadzli & Idroas, M. Yusof & Mazlan, M. & Sa'ad, S. & Teoh, Y.H. & Che Mat, S. & Miskam, M.A. & Abdullah, M.K., 2022. "Methods for improving the in-cylinder airflow characteristics for sustainable transportation using fuels with higher viscosity: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    11. Ingrao, Carlo & Lo Giudice, Agata & Bacenetti, Jacopo & Tricase, Caterina & Dotelli, Giovanni & Fiala, Marco & Siracusa, Valentina & Mbohwa, Charles, 2015. "Energy and environmental assessment of industrial hemp for building applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 29-42.
    12. Mariusz Jerzy Stolarski & Kazimierz Warmiński & Michał Krzyżaniak, 2020. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland," Energies, MDPI, vol. 13(6), pages 1-13, March.
    13. Hansen, Samuel & Mirkouei, Amin & Diaz, Luis A., 2020. "A comprehensive state-of-technology review for upgrading bio-oil to renewable or blended hydrocarbon fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    14. Sinéad M. Madden & Alan Ryan & Patrick Walsh, 2022. "A Systems Thinking Approach Investigating the Estimated Environmental and Economic Benefits and Limitations of Industrial Hemp Cultivation in Ireland from 2017–2021," Sustainability, MDPI, vol. 14(7), pages 1-21, March.
    15. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.
    16. Pandey, Vimal Chandra & Bajpai, Omesh & Singh, Nandita, 2016. "Energy crops in sustainable phytoremediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 58-73.
    17. Rana, Anber & Sadiq, Rehan & Alam, M. Shahria & Karunathilake, Hirushie & Hewage, Kasun, 2021. "Evaluation of financial incentives for green buildings in Canadian landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Bagheri, Mehdi & Shirzadi, Navid & Bazdar, Elahe & Kennedy, Christopher A., 2018. "Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 254-264.
    19. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    20. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.