IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v120y2018icp610-621.html
   My bibliography  Save this article

DSO-TSO cooperation issues and solutions for distribution grid congestion management

Author

Listed:
  • Hadush, Samson Yemane
  • Meeus, Leonardo

Abstract

The role of DSOs is evolving due to the increasing penetration of intermittent and distributed energy resources in the distribution system. On the one hand, TSOs are accessing flexibility resources connected to the distribution grid. On the other hand, DSOs are actively managing distribution grid congestion, moving away from the conventional fit and forget approach. As a result, the need for DSO-TSO cooperation has become increasingly important. In this study, we first discuss market and grid operation issues related to different system states and the corresponding congestion management approaches, in the context of the European electricity market design and regulation. Second, we discuss viable solutions that are inspired by inter-TSO cooperation solutions as well as solutions that are being adopted by DSOs. Our findings show that the issues are rather similar both at transmission and distribution level; however, the need for cooperation and the solutions will depend on where structural congestion will occur and which borders will be managed. We also note that cooperation between DSOs as well as between DSOs and microgrids could become more important with the development of local energy markets in the long term.

Suggested Citation

  • Hadush, Samson Yemane & Meeus, Leonardo, 2018. "DSO-TSO cooperation issues and solutions for distribution grid congestion management," Energy Policy, Elsevier, vol. 120(C), pages 610-621.
  • Handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:610-621
    DOI: 10.1016/j.enpol.2018.05.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518303823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.05.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.
    2. Yuan, Zhao & Hesamzadeh, Mohammad Reza, 2017. "Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources," Applied Energy, Elsevier, vol. 195(C), pages 600-615.
    3. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    4. Paul L. Joskow, 2001. "California's Electricity Crisis," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 17(3), pages 365-388.
    5. Roger E. Bohn & Michael C. Caramanis & Fred C. Schweppe, 1984. "Optimal Pricing in Electrical Networks over Space and Time," RAND Journal of Economics, The RAND Corporation, vol. 15(3), pages 360-376, Autumn.
    6. Kane, Laura & Ault, Graham, 2014. "A review and analysis of renewable energy curtailment schemes and Principles of Access: Transitioning towards business as usual," Energy Policy, Elsevier, vol. 72(C), pages 67-77.
    7. Meeus, Leonardo, 2011. "Implicit auctioning on the Kontek Cable: Third time lucky?," Energy Economics, Elsevier, vol. 33(3), pages 413-418, May.
    8. Anaya, Karim L. & Pollitt, Michael G., 2015. "Options for allocating and releasing distribution system capacity: Deciding between interruptible connections and firm DG connections," Applied Energy, Elsevier, vol. 144(C), pages 96-105.
    9. David Newbery & Tanga McDaniel, 2002. "Auctions and trading in energy markets - an economic analysis," Working Papers EP15, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    10. Anaya, Karim L. & Pollitt, Michael G., 2014. "Experience with smarter commercial arrangements for distributed wind generation," Energy Policy, Elsevier, vol. 71(C), pages 52-62.
    11. Wolak, Frank A., 2003. "Diagnosing the California Electricity Crisis," The Electricity Journal, Elsevier, vol. 16(7), pages 11-37.
    12. Anaya, Karim L. & Pollitt, Michael G., 2017. "Going smarter in the connection of distributed generation," Energy Policy, Elsevier, vol. 105(C), pages 608-617.
    13. Eid, Cherrelle & Bollinger, L. Andrew & Koirala, Binod & Scholten, Daniel & Facchinetti, Emanuele & Lilliestam, Johan & Hakvoort, Rudi, 2016. "Market integration of local energy systems: Is local energy management compatible with European regulation for retail competition?," Energy, Elsevier, vol. 114(C), pages 913-922.
    14. R.A. Hakvoort & L.J. De Vries, 2002. "An economic assessment of congestion management methods for electricity transmission networks," Competition and Regulation in Network Industries, Intersentia, vol. 3(4), pages 425-467, September.
    15. Koirala, Binod Prasad & Koliou, Elta & Friege, Jonas & Hakvoort, Rudi A. & Herder, Paulien M., 2016. "Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 722-744.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palovic, Martin, 2022. "Administrative congestion management meets electricity network regulation: Aligning incentives between the renewable generators and network operator," Utilities Policy, Elsevier, vol. 79(C).
    2. Guo, Peiyang & Li, Victor O.K. & Lam, Jacqueline C.K., 2017. "Smart demand response in China: Challenges and drivers," Energy Policy, Elsevier, vol. 107(C), pages 1-10.
    3. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    4. Konstantinos Oureilidis & Kyriaki-Nefeli Malamaki & Konstantinos Gallos & Achilleas Tsitsimelis & Christos Dikaiakos & Spyros Gkavanoudis & Milos Cvetkovic & Juan Manuel Mauricio & Jose Maria Maza Ort, 2020. "Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers," Energies, MDPI, vol. 13(4), pages 1-44, February.
    5. Andoni, Merlinda & Robu, Valentin & Früh, Wolf-Gerrit & Flynn, David, 2017. "Game-theoretic modeling of curtailment rules and network investments with distributed generation," Applied Energy, Elsevier, vol. 201(C), pages 174-187.
    6. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    7. Michael G. Pollitt and Karim L. Anaya, 2016. "Can current electricity markets cope with high shares of renewables? A comparison of approaches in Germany, the UK and the State of New York," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    8. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    9. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    10. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    11. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    12. Thomas Pownall & Iain Soutar & Catherine Mitchell, 2021. "Re-Designing GB’s Electricity Market Design: A Conceptual Framework Which Recognises the Value of Distributed Energy Resources," Energies, MDPI, vol. 14(4), pages 1-26, February.
    13. Paul Neetzow & Roman Mendelevitch & Sauleh Siddiqui, 2018. "Modeling Coordination between Renewables and Grid: Policies to Mitigate Distribution Grid Constraints Using Residential PV-Battery Systems," Discussion Papers of DIW Berlin 1766, DIW Berlin, German Institute for Economic Research.
    14. Horowitz, I. & Woo, C.K., 2006. "Designing Pareto-superior demand-response rate options," Energy, Elsevier, vol. 31(6), pages 1040-1051.
    15. Edens, Marga G. & Lavrijssen, Saskia A.C.M., 2019. "Balancing public values during the energy transition – How can German and Dutch DSOs safeguard sustainability?," Energy Policy, Elsevier, vol. 128(C), pages 57-65.
    16. Nima Mirzaei Alavijeh & David Steen & Zack Norwood & Le Anh Tuan & Christos Agathokleous, 2020. "Cost-Effectiveness of Carbon Emission Abatement Strategies for a Local Multi-Energy System—A Case Study of Chalmers University of Technology Campus," Energies, MDPI, vol. 13(7), pages 1-23, April.
    17. Baker, Scott R. & Davis, Steven J. & Levy, Jeffrey A., 2022. "State-level economic policy uncertainty," Journal of Monetary Economics, Elsevier, vol. 132(C), pages 81-99.
    18. Uz, Dilek, 2018. "Energy efficiency investments in small and medium sized manufacturing firms: The case of California energy crisis," Energy Economics, Elsevier, vol. 70(C), pages 421-428.
    19. Neetzow, Paul & Mendelevitch, Roman & Siddiqui, Sauleh, 2019. "Modeling coordination between renewables and grid: Policies to mitigate distribution grid constraints using residential PV-battery systems," Energy Policy, Elsevier, vol. 132(C), pages 1017-1033.
    20. Chi-Keung Woo, Ira Horowitz, Jay Zarnikau, Jack Moore, Brendan Schneiderman, Tony Ho, and Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:610-621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.