IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v144y2015icp96-105.html
   My bibliography  Save this article

Options for allocating and releasing distribution system capacity: Deciding between interruptible connections and firm DG connections

Author

Listed:
  • Anaya, Karim L.
  • Pollitt, Michael G.

Abstract

The aim of this study is to quantify the trade-off between selecting a distributed generation (DG) smarter connection with limited export capacity and a more expensive firm DG connection with a guarantee of full export capacity. The study is part of the analysis of a customer funded network innovation project in the UK. A cost-benefit analysis of the different connection options for connecting DG customers in a specific constrained area in the UK is performed. The study not only requires the identification of the main cost drivers and revenues (including embedded benefits and those allowed by regulation) for getting a new DG connection but also illustrates the interaction (operational and contractual) between the different parties involved (generators, distribution network operators, electricity suppliers, and demand). This study provides empirical evidence, under a number of scenarios, of the potential savings when a smart connection option is available. The results suggest that in general small wind DG customers will always have an advantage in selecting a smarter connection over large ones. We also examine the type of connection that would be preferred by solar PV DG customers and Anaerobic Digestion (AD) DG customers. The study shows that lower curtailment levels tend to substantially reduce the value of firm connections.

Suggested Citation

  • Anaya, Karim L. & Pollitt, Michael G., 2015. "Options for allocating and releasing distribution system capacity: Deciding between interruptible connections and firm DG connections," Applied Energy, Elsevier, vol. 144(C), pages 96-105.
  • Handle: RePEc:eee:appene:v:144:y:2015:i:c:p:96-105
    DOI: 10.1016/j.apenergy.2015.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915000598
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonardo Meeus & Marcelo Saguan & Jean-Michel Glachant & Ronnie Belmans, 2010. "Smart Regulation for Smart Grids," RSCAS Working Papers 2010/45, European University Institute.
    2. Passey, Robert & Spooner, Ted & MacGill, Iain & Watt, Muriel & Syngellakis, Katerina, 2011. "The potential impacts of grid-connected distributed generation and how to address them: A review of technical and non-technical factors," Energy Policy, Elsevier, vol. 39(10), pages 6280-6290, October.
    3. Anaya, Karim L. & Pollitt, Michael G., 2014. "Experience with smarter commercial arrangements for distributed wind generation," Energy Policy, Elsevier, vol. 71(C), pages 52-62.
    4. Niemi, R. & Lund, P.D., 2010. "Decentralized electricity system sizing and placement in distribution networks," Applied Energy, Elsevier, vol. 87(6), pages 1865-1869, June.
    5. Kane, Laura & Ault, Graham, 2014. "A review and analysis of renewable energy curtailment schemes and Principles of Access: Transitioning towards business as usual," Energy Policy, Elsevier, vol. 72(C), pages 67-77.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Newbery, D., 2017. "The economics of air pollution from fossil fuels," Cambridge Working Papers in Economics 1719, Faculty of Economics, University of Cambridge.
    2. Hadush, Samson Yemane & Meeus, Leonardo, 2018. "DSO-TSO cooperation issues and solutions for distribution grid congestion management," Energy Policy, Elsevier, vol. 120(C), pages 610-621.
    3. Palovic, Martin, 2022. "Administrative congestion management meets electricity network regulation: Aligning incentives between the renewable generators and network operator," Utilities Policy, Elsevier, vol. 79(C).
    4. Qi, Qi & Long, Chao & Wu, Jianzhong & Yu, James, 2018. "Impacts of a medium voltage direct current link on the performance of electrical distribution networks," Applied Energy, Elsevier, vol. 230(C), pages 175-188.
    5. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    6. Karim Anaya & Michael Pollitt, 2021. "An evaluation of a local reactive power market: the case of Power Potential," Working Papers EPRG2124, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Michael G. Pollitt and Karim L. Anaya, 2016. "Can current electricity markets cope with high shares of renewables? A comparison of approaches in Germany, the UK and the State of New York," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    8. Karim L. Anaya & Michael G. Pollitt, 2021. "The Role of Regulators in Promoting the Procurement of Flexibility Services within the Electricity Distribution System: A Survey of Seven Leading Countries," Energies, MDPI, vol. 14(14), pages 1-25, July.
    9. Anaya, Karim L. & Pollitt, Michael G., 2022. "A social cost benefit analysis for the procurement of reactive power: The case of Power Potential," Applied Energy, Elsevier, vol. 312(C).
    10. Andoni, Merlinda & Robu, Valentin & Früh, Wolf-Gerrit & Flynn, David, 2017. "Game-theoretic modeling of curtailment rules and network investments with distributed generation," Applied Energy, Elsevier, vol. 201(C), pages 174-187.
    11. Anaya, Karim L. & Pollitt, Michael G., 2017. "Going smarter in the connection of distributed generation," Energy Policy, Elsevier, vol. 105(C), pages 608-617.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andoni, Merlinda & Robu, Valentin & Früh, Wolf-Gerrit & Flynn, David, 2017. "Game-theoretic modeling of curtailment rules and network investments with distributed generation," Applied Energy, Elsevier, vol. 201(C), pages 174-187.
    2. Palovic, Martin, 2022. "Administrative congestion management meets electricity network regulation: Aligning incentives between the renewable generators and network operator," Utilities Policy, Elsevier, vol. 79(C).
    3. Hadush, Samson Yemane & Meeus, Leonardo, 2018. "DSO-TSO cooperation issues and solutions for distribution grid congestion management," Energy Policy, Elsevier, vol. 120(C), pages 610-621.
    4. Anaya, Karim L. & Pollitt, Michael G., 2015. "Integrating distributed generation: Regulation and trends in three leading countries," Energy Policy, Elsevier, vol. 85(C), pages 475-486.
    5. Anaya, Karim L. & Pollitt, Michael G., 2017. "Going smarter in the connection of distributed generation," Energy Policy, Elsevier, vol. 105(C), pages 608-617.
    6. Kwami Senam A. Sedzro & Kelsey Horowitz & Akshay K. Jain & Fei Ding & Bryan Palmintier & Barry Mather, 2021. "Evaluating the Curtailment Risk of Non-Firm Utility-Scale Solar Photovoltaic Plants under a Novel Last-In First-Out Principle of Access Interconnection Agreement," Energies, MDPI, vol. 14(5), pages 1-14, March.
    7. Sun, Wei & Harrison, Gareth P., 2019. "Wind-solar complementarity and effective use of distribution network capacity," Applied Energy, Elsevier, vol. 247(C), pages 89-101.
    8. Michael G. Pollitt and Karim L. Anaya, 2016. "Can current electricity markets cope with high shares of renewables? A comparison of approaches in Germany, the UK and the State of New York," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    9. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    10. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    11. Agrell, Per J. & Bogetoft, Peter & Mikkers, Misja, 2013. "Smart-grid investments, regulation and organization," Energy Policy, Elsevier, vol. 52(C), pages 656-666.
    12. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    13. Simona Benedettini & Federico Pontoni, "undated". "Electricity distribution investments: no country for old rules? A critical overview of UK and Italian regulations," IEFE Working Papers 50, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    14. Cédric Clastres, 2011. "Smart grids : Another step towards competition, energy security and climate change objectives," Post-Print halshs-00617702, HAL.
    15. Lonergan, Katherine Emma & Sansavini, Giovanni, 2022. "Business structure of electricity distribution system operator and effect on solar photovoltaic uptake: An empirical case study for Switzerland," Energy Policy, Elsevier, vol. 160(C).
    16. Jean-Henry Ferrasse & Nandeeta Neerunjun & Hubert Stahn, 2021. "Managing intermittency in the electricity market," Working Papers halshs-03154612, HAL.
    17. Astriani, Yuli & Shafiullah, GM & Shahnia, Farhad, 2021. "Incentive determination of a demand response program for microgrids," Applied Energy, Elsevier, vol. 292(C).
    18. Azevedo, Isabel & Delarue, Erik & Meeus, Leonardo, 2013. "Mobilizing cities towards a low-carbon future: Tambourines, carrots and sticks," Energy Policy, Elsevier, vol. 61(C), pages 894-900.
    19. Georgopoulou, E. & Mirasgedis, S. & Sarafidis, Y. & Gakis, N. & Hontou, V. & Lalas, D.P. & Steiner, D. & Tuerk, A. & Fruhmann, C. & Pucker, J., 2015. "Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans," Energy, Elsevier, vol. 92(P3), pages 577-591.
    20. Yu, Moduo & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Wu, Pan & Chen, Weidong, 2018. "Transient stability mechanism of grid-connected inverter-interfaced distributed generators using droop control strategy," Applied Energy, Elsevier, vol. 210(C), pages 737-747.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:144:y:2015:i:c:p:96-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.