IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v38y2016i3d10.1007_s00291-015-0395-x.html
   My bibliography  Save this article

The effect of intermittent renewables on the electricity price variance

Author

Listed:
  • David Wozabal

    (TUM School of Management)

  • Christoph Graf

    (European University Institute
    University of Vienna)

  • David Hirschmann

    (University of Vienna)

Abstract

The dominating view in the literature is that renewable electricity production increases the price variance on spot markets for electricity. In this paper, we critically review this hypothesis. Using a static market model, we identify the variance of the infeed from intermittent electricity sources (IES) and the shape of the industry supply curve as two pivotal factors influencing the electricity price variance. The model predicts that the overall effect of IES infeed depends on the produced amount: while small to moderate quantities of IES tend to decrease the price variance, large quantities have the opposite effect. In the second part of the paper, we test these predictions using data from Germany, where investments in IES have been massive in the recent years. The results of this econometric analysis largely conform to the predictions from the theoretical model. Our findings suggest that subsidy schemes for IES capacities should be complemented by policy measures supporting variance absorbing technologies such as smart-grids, energy storage, or grid interconnections to ensure the build-up of sufficient capacities in time.

Suggested Citation

  • David Wozabal & Christoph Graf & David Hirschmann, 2016. "The effect of intermittent renewables on the electricity price variance," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 687-709, July.
  • Handle: RePEc:spr:orspec:v:38:y:2016:i:3:d:10.1007_s00291-015-0395-x
    DOI: 10.1007/s00291-015-0395-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-015-0395-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-015-0395-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guille, Christophe & Gross, George, 2009. "A conceptual framework for the vehicle-to-grid (V2G) implementation," Energy Policy, Elsevier, vol. 37(11), pages 4379-4390, November.
    2. Lion Hirth, 2013. "The Market Value of Variable Renewables. The Effect of Solar and Wind Power Variability on their Relative Price," RSCAS Working Papers 2013/36, European University Institute.
    3. Klinge Jacobsen, Henrik & Zvingilaite, Erika, 2010. "Reducing the market impact of large shares of intermittent energy in Denmark," Energy Policy, Elsevier, vol. 38(7), pages 3403-3413, July.
    4. Jónsson, Tryggvi & Pinson, Pierre & Madsen, Henrik, 2010. "On the market impact of wind energy forecasts," Energy Economics, Elsevier, vol. 32(2), pages 313-320, March.
    5. David Wozabal & Christoph Graf & David Hirschmann, 2013. "Renewable Energy and Its Impact on Power Markets," International Series in Operations Research & Management Science, in: Raimund M. Kovacevic & Georg Ch. Pflug & Maria Teresa Vespucci (ed.), Handbook of Risk Management in Energy Production and Trading, edition 127, chapter 0, pages 283-311, Springer.
    6. Green, Richard & Vasilakos, Nicholas, 2010. "Market behaviour with large amounts of intermittent generation," Energy Policy, Elsevier, vol. 38(7), pages 3211-3220, July.
    7. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes: A case study of the German market premium," UFZ Discussion Papers 4/2013, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    8. Fanone, Enzo & Gamba, Andrea & Prokopczuk, Marcel, 2013. "The case of negative day-ahead electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 22-34.
    9. Timothy Dunne & Xiaoyi Mu, 2010. "Investment Spikes And Uncertainty In The Petroleum Refining Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 58(1), pages 190-213, March.
    10. Tveten, Åsa Grytli & Bolkesjø, Torjus Folsland & Martinsen, Thomas & Hvarnes, Håvard, 2013. "Solar feed-in tariffs and the merit order effect: A study of the German electricity market," Energy Policy, Elsevier, vol. 61(C), pages 761-770.
    11. Graf, Christoph & Wozabal, David, 2013. "Measuring competitiveness of the EPEX spot market for electricity," Energy Policy, Elsevier, vol. 62(C), pages 948-958.
    12. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    13. Redl, Christian & Haas, Reinhard & Huber, Claus & Böhm, Bernhard, 2009. "Price formation in electricity forward markets and the relevance of systematic forecast errors," Energy Economics, Elsevier, vol. 31(3), pages 356-364, May.
    14. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    15. Andreas Wagner, 2014. "Residual Demand Modeling and Application to Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    16. Zeileis, Achim, 2006. "Object-oriented Computation of Sandwich Estimators," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 16(i09).
    17. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    18. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    19. Dae‐Wook Kim & Christopher R. Knittel, 2006. "Biases In Static Oligopoly Models? Evidence From The California Electricity Market," Journal of Industrial Economics, Wiley Blackwell, vol. 54(4), pages 451-470, December.
    20. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    21. Muche, Thomas, 2009. "A real option-based simulation model to evaluate investments in pump storage plants," Energy Policy, Elsevier, vol. 37(11), pages 4851-4862, November.
    22. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    23. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    24. Pablo Arocena & David S. Saal & Tim Coelli, 2012. "Vertical and Horizontal Scope Economies in the Regulated U . S . Electric Power Industry," Journal of Industrial Economics, Wiley Blackwell, vol. 60(3), pages 434-467, September.
    25. Gawel, Erik & Purkus, Alexandra, 2013. "Promoting the market and system integration of renewable energies through premium schemes—A case study of the German market premium," Energy Policy, Elsevier, vol. 61(C), pages 599-609.
    26. Woo, C.K. & Horowitz, I. & Moore, J. & Pacheco, A., 2011. "The impact of wind generation on the electricity spot-market price level and variance: The Texas experience," Energy Policy, Elsevier, vol. 39(7), pages 3939-3944, July.
    27. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    28. Milstein, Irena & Tishler, Asher, 2011. "Intermittently renewable energy, optimal capacity mix and prices in a deregulated electricity market," Energy Policy, Elsevier, vol. 39(7), pages 3922-3927, July.
    29. Raimund M. Kovacevic & Georg Ch. Pflug & Maria Teresa Vespucci (ed.), 2013. "Handbook of Risk Management in Energy Production and Trading," International Series in Operations Research and Management Science, Springer, edition 127, number 978-1-4614-9035-7, September.
    30. Chao, Hung-po, 2011. "Efficient pricing and investment in electricity markets with intermittent resources," Energy Policy, Elsevier, vol. 39(7), pages 3945-3953, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schöniger, Franziska & Morawetz, Ulrich B., 2022. "What comes down must go up: Why fluctuating renewable energy does not necessarily increase electricity spot price variance in Europe," Energy Economics, Elsevier, vol. 111(C).
    2. Figueiredo, Nuno Carvalho & Silva, Patrícia Pereira da, 2019. "The “Merit-order effect” of wind and solar power: Volatility and determinants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 54-62.
    3. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    4. Winkler, Jenny & Gaio, Alberto & Pfluger, Benjamin & Ragwitz, Mario, 2016. "Impact of renewables on electricity markets – Do support schemes matter?," Energy Policy, Elsevier, vol. 93(C), pages 157-167.
    5. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    6. Jägemann, Cosima, 2014. "An illustrative note on the system price effect of wind and solar power - The German case," EWI Working Papers 2014-10, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    7. Dillig, Marius & Jung, Manuel & Karl, Jürgen, 2016. "The impact of renewables on electricity prices in Germany – An estimation based on historic spot prices in the years 2011–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 7-15.
    8. Thao Pham & Killian Lemoine, 2020. "Impacts of subsidized renewable electricity generation on spot market prices in Germany : Evidence from a GARCH model with panel data," Working Papers hal-02568268, HAL.
    9. Würzburg, Klaas & Labandeira, Xavier & Linares, Pedro, 2013. "Renewable generation and electricity prices: Taking stock and new evidence for Germany and Austria," Energy Economics, Elsevier, vol. 40(S1), pages 159-171.
    10. Kyritsis, Evangelos & Andersson, Jonas & Serletis, Apostolos, 2017. "Electricity prices, large-scale renewable integration, and policy implications," Energy Policy, Elsevier, vol. 101(C), pages 550-560.
    11. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    12. Brian Rivard and Adonis Yatchew, 2016. "Integration of Renewables into the Ontario Electricity System," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    13. Lynch & John Curtis, 2016. "The effects of wind generation capacity on electricity prices and generation costs: a Monte Carlo analysis," Applied Economics, Taylor & Francis Journals, vol. 48(2), pages 133-151, January.
    14. Adom, Philip Kofi & Insaidoo, Michael & Minlah, Michael Kaku & Abdallah, Abdul-Mumuni, 2017. "Does renewable energy concentration increase the variance/uncertainty in electricity prices in Africa?," Renewable Energy, Elsevier, vol. 107(C), pages 81-100.
    15. Clò, Stefano & Cataldi, Alessandra & Zoppoli, Pietro, 2015. "The merit-order effect in the Italian power market: The impact of solar and wind generation on national wholesale electricity prices," Energy Policy, Elsevier, vol. 77(C), pages 79-88.
    16. Clò, Stefano & D'Adamo, Gaetano, 2015. "The dark side of the sun: How solar power production affects the market value of solar and gas sources," Energy Economics, Elsevier, vol. 49(C), pages 523-530.
    17. Zamani-Dehkordi, Payam & Rakai, Logan & Zareipour, Hamidreza, 2016. "Deciding on the support schemes for upcoming wind farms in competitive electricity markets," Energy, Elsevier, vol. 116(P1), pages 8-19.
    18. De Siano, Rita & Sapio, Alessandro, 2022. "Spatial merit order effects of renewables in the Italian power exchange," Energy Economics, Elsevier, vol. 108(C).
    19. Mulder, Machiel & Scholtens, Bert, 2016. "A plant-level analysis of the spill-over effects of the German Energiewende," Applied Energy, Elsevier, vol. 183(C), pages 1259-1271.
    20. Sapio, Alessandro, 2019. "Greener, more integrated, and less volatile? A quantile regression analysis of Italian wholesale electricity prices," Energy Policy, Elsevier, vol. 126(C), pages 452-469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:38:y:2016:i:3:d:10.1007_s00291-015-0395-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.