IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2662-d787335.html
   My bibliography  Save this article

The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic

Author

Listed:
  • Małgorzata Sztorc

    (Department of Marketing and Management, Faculty of Management and Computer Modeling, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland)

Abstract

This article aims to present changes in the use of electricity by service companies, resulting from regulations within the framework of increasing energy efficiency from the perspective of the implementation of the European Green Deal strategy. To achieve the above goal, the following research question was formulated: to what extent did the COVID-19 pandemic affect the implementation of energy transformation and electricity consumption among the surveyed group of recipients? It should be noted that, so far in the global environment, more and more electricity has been used every year, and this tendency is still continuous and growing. Therefore, in European Union countries, measures have been taken to balance demand and its rational use, resulting from the implementation of the European Green Deal strategy. According to the strategic goal of the indicated policy, EU countries are obliged to implement a sequence of actions enabling their transformation into a modern, resource-efficient, and competitive economy. In particular, the strategy aims to achieve three main goals: 1. Achieving climate neutrality by reducing net greenhouse gas emissions to zero in 2050; 2. Decoupling economic growth from the consumption of natural resources; and 3. Striving for an equal standard of living in all countries. Therefore, the behavior of individual countries should focus on providing the required amount of energy to ensure socioeconomic growth while reducing pollution and environmental devastation caused by traditional methods of energy production and use. There are numerous talks and debates about the defined tasks and mechanisms leading to the achievement of the indicated goals, in which hardly any mention is made of the methods of monitoring the progress and evaluation of individual projects at the stage of building a new green deal. This study aims to fill the research gap observed in the current state of knowledge on energy management in EU countries from the perspective of the European Green Deal strategy and changes in its management resulting from the conditions of the COVID-19 pandemic. Therefore, in line with the aim of the article: 1. Factors influencing electricity consumption in service enterprises operating in EU countries were indicated; 2. Energy consumption variability in these entities was determined; and 3. The correlation between electricity consumption and GDP growth in the service sector located in EU countries was indicated. Therefore, a hybrid research method was used to analyze the data obtained from the databases of Eurostat and Statistics Poland, which consisted of the following analyses: diagnostic-descriptive, main components, and wavelet transform. Based on the conducted research, it should be concluded that energy consumption among service companies operating in the EU market is conditioned by three sources of causes along with the relevant consumption factors. The first group includes energy and technical premises, along with technological determinants. The second is shaped by financial and economic motives, which include socioeconomic factors. The third group is related to environmental sources represented by the natural environment and geographic and meteorological factors. The increase in electricity consumption in service enterprises is related to the average GDP growth of EU countries following a two-way cause-and-effect relationship implemented until 2019. Nevertheless, since 2020, there has been a noticeable decrease in energy consumption by 14.01% by service entities, which results from the limitations caused by the COVID-19 pandemic and the implementation of the European Green Deal strategy. Meanwhile, the structure of electricity consumption growth was dominated by industrial enterprises (increased by 37.7%) and individual consumers (increased by 7.8%). The results of the research may motivate the managers of EU countries and enterprises to analyze the factors of energy consumption, its variability, and dependence on economic growth, which contribute to determining the forecast of future energy demand, in connection with the ongoing energy transformation resulting from the implementation of the European Green Deal strategy, and economic slowdown caused by the COVID-19 pandemic. The issues presented in this article are an attempt to fill the gap indicating practical experience related to the process of electricity management and management in the political, economic, and technological dimensions from the perspective of implementing the European Green Deal strategy and the conditions resulting from the COVID-19 pandemic.

Suggested Citation

  • Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2662-:d:787335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2662/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2662/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acheampong, Alex O. & Boateng, Elliot & Amponsah, Mary & Dzator, Janet, 2021. "Revisiting the economic growth–energy consumption nexus: Does globalization matter?," Energy Economics, Elsevier, vol. 102(C).
    2. Esseghir, Asma & Haouaoui Khouni, Leila, 2014. "Economic growth, energy consumption and sustainable development: The case of the Union for the Mediterranean countries," Energy, Elsevier, vol. 71(C), pages 218-225.
    3. Hara, Keishiro & Uwasu, Michinori & Kishita, Yusuke & Takeda, Hiroyuki, 2015. "Determinant factors of residential consumption and perception of energy conservation: Time-series analysis by large-scale questionnaire in Suita, Japan," Energy Policy, Elsevier, vol. 87(C), pages 240-249.
    4. Georgeta Soava & Anca Mehedintu & Mihaela Sterpu & Eugenia Grecu, 2021. "The Impact of the COVID-19 Pandemic on Electricity Consumption and Economic Growth in Romania," Energies, MDPI, vol. 14(9), pages 1-25, April.
    5. Wiesmann, Daniel & Lima Azevedo, Inês & Ferrão, Paulo & Fernández, John E., 2011. "Residential electricity consumption in Portugal: Findings from top-down and bottom-up models," Energy Policy, Elsevier, vol. 39(5), pages 2772-2779, May.
    6. Apergis, Nicholas & Payne, James E., 2009. "Energy consumption and economic growth: Evidence from the Commonwealth of Independent States," Energy Economics, Elsevier, vol. 31(5), pages 641-647, September.
    7. Zhang, Fan, 2013. "The energy transition of the transition economies: An empirical analysis," Energy Economics, Elsevier, vol. 40(C), pages 679-686.
    8. Narayan, Seema, 2016. "Predictability within the energy consumption–economic growth nexus: Some evidence from income and regional groups," Economic Modelling, Elsevier, vol. 54(C), pages 515-521.
    9. Mehdi Chihib & Esther Salmerón-Manzano & Mimoun Chourak & Alberto-Jesus Perea-Moreno & Francisco Manzano-Agugliaro, 2021. "Impact of the COVID-19 Pandemic on the Energy Use at the University of Almeria (Spain)," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    10. Ana-Maria Bercu & Gigel Paraschiv & Dan Lupu, 2019. "Investigating the Energy–Economic Growth–Governance Nexus: Evidence from Central and Eastern European Countries," Sustainability, MDPI, vol. 11(12), pages 1-21, June.
    11. Jiang, Peng & Fan, Yee Van & Klemeš, Jiří Jaromír, 2021. "Impacts of COVID-19 on energy demand and consumption: Challenges, lessons and emerging opportunities," Applied Energy, Elsevier, vol. 285(C).
    12. Yi-Chung Hu, 2017. "Electricity consumption prediction using a neural-network-based grey forecasting approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1259-1264, October.
    13. Robert Lisowski & Maciej Woźniak & Paweł Jastrzębski & Simeon Karafolas & Marek Matejun, 2021. "Determinants of Investments in Energy Sector in Poland," Energies, MDPI, vol. 14(15), pages 1-17, July.
    14. Blázquez, Leticia & Boogen, Nina & Filippini, Massimo, 2013. "Residential electricity demand in Spain: New empirical evidence using aggregate data," Energy Economics, Elsevier, vol. 36(C), pages 648-657.
    15. Moral-Carcedo, Julian & Vicens-Otero, Jose, 2005. "Modelling the non-linear response of Spanish electricity demand to temperature variations," Energy Economics, Elsevier, vol. 27(3), pages 477-494, May.
    16. Marinus Ossewaarde & Roshnee Ossewaarde-Lowtoo, 2020. "The EU’s Green Deal: A Third Alternative to Green Growth and Degrowth?," Sustainability, MDPI, vol. 12(23), pages 1-15, November.
    17. Omri, Anis, 2014. "An international literature survey on energy-economic growth nexus: Evidence from country-specific studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 951-959.
    18. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    19. Aktar, Asikha & Alam, Md. Mahmudul & Al-Amin, Abul Quasem, 2021. "Global Economic Crisis, Energy Use, CO2 Emissions and Policy Roadmap amid COVID-19," OSF Preprints 69kje, Center for Open Science.
    20. Druckman, A. & Jackson, T., 2008. "Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model," Energy Policy, Elsevier, vol. 36(8), pages 3167-3182, August.
    21. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    22. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    23. Cayla, Jean-Michel & Maizi, Nadia & Marchand, Christophe, 2011. "The role of income in energy consumption behaviour: Evidence from French households data," Energy Policy, Elsevier, vol. 39(12), pages 7874-7883.
    24. Andreas Löschel, 2020. "European Green Deal und deutsche Energiewende zusammen denken! [The European Green Deal and the German energy transformation combined!]," Wirtschaftsdienst, Springer;ZBW - Leibniz Information Centre for Economics, vol. 100(2), pages 78-79, February.
    25. Śmiech, Sławomir & Papież, Monika, 2014. "Energy consumption and economic growth in the light of meeting the targets of energy policy in the EU: The bootstrap panel Granger causality approach," Energy Policy, Elsevier, vol. 71(C), pages 118-129.
    26. Nayan, Sabri & Kadir, Norsiah & Ahmad, Mahyudin & Abdullah, Mat Saad, 2013. "Revisiting Energy Consumption and GDP: Evidence from Dynamic Panel Data Analysis," MPRA Paper 48714, University Library of Munich, Germany.
    27. Kaza, Nikhil, 2010. "Understanding the spectrum of residential energy consumption: A quantile regression approach," Energy Policy, Elsevier, vol. 38(11), pages 6574-6585, November.
    28. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    29. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    30. Zhang, Yi & Fan, Ying & Xia, Yan, 2021. "Structural evolution of energy embodied in final demand as economic growth: Empirical evidence from 25 countries," Energy Policy, Elsevier, vol. 156(C).
    31. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    32. Chong, Howard, 2012. "Building vintage and electricity use: Old homes use less electricity in hot weather," European Economic Review, Elsevier, vol. 56(5), pages 906-930.
    33. Lee, Chien-Chiang & Chang, Chun-Ping, 2007. "Energy consumption and GDP revisited: A panel analysis of developed and developing countries," Energy Economics, Elsevier, vol. 29(6), pages 1206-1223, November.
    34. Ozcan, Burcu & Tzeremes, Panayiotis G. & Tzeremes, Nickolaos G., 2020. "Energy consumption, economic growth and environmental degradation in OECD countries," Economic Modelling, Elsevier, vol. 84(C), pages 203-213.
    35. Rabindra Nepal & Tooraj Jamasb & Clement Allan Tisdell, 2014. "Market-related reforms and increased energy efficiency in transition countries: empirical evidence," Applied Economics, Taylor & Francis Journals, vol. 46(33), pages 4125-4136, November.
    36. Andersen, F.M. & Gunkel, P.A. & Jacobsen, H.K. & Kitzing, L., 2021. "Residential electricity consumption and household characteristics: An econometric analysis of Danish smart-meter data," Energy Economics, Elsevier, vol. 100(C).
    37. Cornillie, Jan & Fankhauser, Samuel, 2004. "The energy intensity of transition countries," Energy Economics, Elsevier, vol. 26(3), pages 283-295, May.
    38. Franz Fuerst & Dimitra Kavarnou & Ramandeep Singh & Hassan Adan, 2020. "Determinants of energy consumption and exposure to energy price risk: a UK study [Determinanten des Energieverbrauchs und Energiepreisrisiko: Eine Studie aus Großbritannien]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 6(1), pages 65-80, April.
    39. Rebecca Forman & Elias Mossialos, 2021. "The EU Response to COVID‐19: From Reactive Policies to Strategic Decision‐Making," Journal of Common Market Studies, Wiley Blackwell, vol. 59(S1), pages 56-68, September.
    40. Chica-Olmo, Jorge & Sari-Hassoun, Salaheddine & Moya-Fernández, Pablo, 2020. "Spatial relationship between economic growth and renewable energy consumption in 26 European countries," Energy Economics, Elsevier, vol. 92(C).
    41. Zhang, Fan, 2013. "The energy transition of the transition economies : an empirical analysis," Policy Research Working Paper Series 6387, The World Bank.
    42. Ferenc Bakó & Judit Berkes & Cecília Szigeti, 2021. "Households’ Electricity Consumption in Hungarian Urban Areas," Energies, MDPI, vol. 14(10), pages 1-23, May.
    43. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    44. Dimitra Kotsila & Persefoni Polychronidou, 2021. "Determinants of household electricity consumption in Greece: a statistical analysis," Journal of Innovation and Entrepreneurship, Springer, vol. 10(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif Shofirun Sharif Ali & Muhammad Rizal Razman & Azahan Awang & M. R. M. Asyraf & M. R. Ishak & R. A. Ilyas & Roderick John Lawrence, 2021. "Critical Determinants of Household Electricity Consumption in a Rapidly Growing City," Sustainability, MDPI, vol. 13(8), pages 1-20, April.
    2. Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
    3. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    4. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    5. Nsangou, Jean Calvin & Kenfack, Joseph & Nzotcha, Urbain & Ngohe Ekam, Paul Salomon & Voufo, Joseph & Tamo, Thomas T., 2022. "Explaining household electricity consumption using quantile regression, decision tree and artificial neural network," Energy, Elsevier, vol. 250(C).
    6. Amri, Fethi, 2016. "The relationship amongst energy consumption, foreign direct investment and output in developed and developing Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 694-702.
    7. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    8. Shazia Farhat Durrani & Inayatullah Jan & Munir Ahmad, 2021. "Do Primary Energy Consumption and Economic Growth Drive Each Other in Pakistan? Implications for Energy Policy," Biophysical Economics and Resource Quality, Springer, vol. 6(3), pages 1-10, September.
    9. Borozan, Djula, 2018. "Regional-level household energy consumption determinants: The european perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 347-355.
    10. Park, Jongmun & Yun, Sun-Jin, 2022. "Social determinants of residential electricity consumption in Korea: Findings from a spatial panel model," Energy, Elsevier, vol. 239(PE).
    11. Noriza Mohd Saad & Erna Farina Mohamed & Mohamad Taufik Mohd Arshad & Ahmad Lutfi Mohayiddin, 2023. "Electricity Tariff Changes and Consumer Sentiment on Household Consumption Expenditure in Malaysia," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 175-191, March.
    12. Lina Sineviciene & Iryna Sotnyk & Oleksandr Kubatko, 2017. "Determinants of energy efficiency and energy consumption of Eastern Europe post-communist economies," Energy & Environment, , vol. 28(8), pages 870-884, December.
    13. Narayan, Seema, 2016. "Predictability within the energy consumption–economic growth nexus: Some evidence from income and regional groups," Economic Modelling, Elsevier, vol. 54(C), pages 515-521.
    14. Shahbaz, Muhammad & Raghutla, Chandrashekar & Chittedi, Krishna Reddy & Jiao, Zhilun & Vo, Xuan Vinh, 2020. "The effect of renewable energy consumption on economic growth: Evidence from the renewable energy country attractive index," Energy, Elsevier, vol. 207(C).
    15. Javier Bueno & Desiderio Romero-Jordán & Pablo del Río, 2020. "Analysing the Drivers of Electricity Demand in Spain after the Economic Crisis," Energies, MDPI, vol. 13(20), pages 1-18, October.
    16. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    17. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Proceedings of International Academic Conferences 3105452, International Institute of Social and Economic Sciences.
    18. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    19. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    20. Sofien, Tiba & Omri, Anis, 2016. "Literature survey on the relationships between energy variables, environment and economic growth," MPRA Paper 82555, University Library of Munich, Germany, revised 14 Sep 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2662-:d:787335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.