Advanced Search
MyIDEAS: Login to save this paper or follow this series

Residual Load, Renewable Surplus Generation and Storage Requirements in Germany

Contents:

Author Info

  • Wolf-Peter Schill

Abstract

We examine the effects of future renewable expansion in Germany on residual load and renewable surplus generation for policy-relevant scenarios for 2022, 2032 and 2050. We also determine the storage capacities required for taking up renewable surpluses for varying levels of accepted curtailment. Making use of extensive sensitivity analyses, our simulations show that the expansion of variable renewables leads to a strong decrease of the right-hand side of the residual load curve. Renewable surpluses generally have high peaks which only occur in very few hours of the year, whereas overall surplus energy is rather low in most scenarios analyzed. Surpluses increase substantially with growing thermal must-run requirements, decreasing biomass flexibility and decreasing load. On average, most surpluses occur around noon and in spring time. Whereas the energy of single surplus hours is often in the range of existing German pumped hydro capacities, the energy of connected surpluses is substantially larger. Using an optimization model, we find that no additional storage is required in the scenarios for 2022 and 2032 in case of free curtailment. Even restricting curtailment to only 1% of the yearly feed-in of non-dispatchable renewables would render storage investments largely obsolete under the assumption of a flexible system. In contrast, further restrictions of curtailment and a less flexible system would strongly increase storage requirements. In a flexible 2050 scenario, 10 GW of additional storage are optimal even in case of free curtailment due to larger surpluses. Importantly, minor renewable curtailment does not impede achieving the German government's renewable energy targets. We suggest avoiding renewable surpluses in the first place by making thermal generators more flexible. Afterwards, different flexibility options can be used for taking up remaining surpluses, including but not limited to power storage. Curtailment remains as a last resort. Full surplus integration by power storage will never be optimal because of the nature of surpluses shown in this paper. Future research should explore synergies and competition between different flexibility options, while not only covering the wholesale market, but also ancillary services.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.diw.de/documents/publikationen/73/diw_01.c.429202.de/dp1316.pdf
Download Restriction: no

Bibliographic Info

Paper provided by DIW Berlin, German Institute for Economic Research in its series Discussion Papers of DIW Berlin with number 1316.

as in new window
Length: 40 p.
Date of creation: 2013
Date of revision:
Handle: RePEc:diw:diwwpp:dp1316

Contact details of provider:
Postal: Mohrenstraße 58, D-10117 Berlin
Phone: xx49-30-89789-0
Fax: xx49-30-89789-200
Email:
Web page: http://www.diw.de/en
More information through EDIRC

Related research

Keywords: Renewable energy; Residual load; Storage; Curtailment; Germany;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Steffen, Bjarne & Weber, Christoph, 2013. "Efficient storage capacity in power systems with thermal and renewable generation," Energy Economics, Elsevier, vol. 36(C), pages 556-567.
  2. Ramteen Sioshansi & Paul Denholm & Thomas Jenkin, 2012. "Market and Policy Barriers to Deployment of Energy Storage," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
  3. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.
  4. Mason, I.G. & Page, S.C. & Williamson, A.G., 2013. "Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand," Energy Policy, Elsevier, vol. 60(C), pages 324-333.
  5. Pregger, Thomas & Nitsch, Joachim & Naegler, Tobias, 2013. "Long-term scenarios and strategies for the deployment of renewable energies in Germany," Energy Policy, Elsevier, vol. 59(C), pages 350-360.
  6. Steffen, Bjarne, 2012. "Prospects for pumped-hydro storage in Germany," Energy Policy, Elsevier, vol. 45(C), pages 420-429.
  7. Paul L. Joskow, 2010. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," Working Papers 1013, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
  8. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
  9. Eric Borden & Wolf-Peter Schill, 2013. "Policy Efforts for the Development of Storage Technologies in the U.S. and Germany," Discussion Papers of DIW Berlin 1328, DIW Berlin, German Institute for Economic Research.
  10. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
  11. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
  12. Andreas Schröder & Friedrich Kunz & Jan Meiss & Roman Mendelevitch & Christian von Hirschhausen, 2013. "Current and Prospective Costs of Electricity Generation until 2050," Data Documentation 68, DIW Berlin, German Institute for Economic Research.
  13. Esteban, Miguel & Zhang, Qi & Utama, Agya, 2012. "Estimation of the energy storage requirement of a future 100% renewable energy system in Japan," Energy Policy, Elsevier, vol. 47(C), pages 22-31.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1316. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bibliothek).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.