IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v145y2003i1p148-164.html
   My bibliography  Save this article

Methodological contrasts in costing greenhouse gas abatement policies: Optimization and simulation modeling of micro-economic effects in Canada

Author

Listed:
  • Jaccard, Mark
  • Loulou, Richard
  • Kanudia, Amit
  • Nyboer, John
  • Bailie, Alison
  • Labriet, Maryse

Abstract

No abstract is available for this item.

Suggested Citation

  • Jaccard, Mark & Loulou, Richard & Kanudia, Amit & Nyboer, John & Bailie, Alison & Labriet, Maryse, 2003. "Methodological contrasts in costing greenhouse gas abatement policies: Optimization and simulation modeling of micro-economic effects in Canada," European Journal of Operational Research, Elsevier, vol. 145(1), pages 148-164, February.
  • Handle: RePEc:eee:ejores:v:145:y:2003:i:1:p:148-164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(01)00402-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark Jaccard & Alison Bailie & John Nyboer, 1996. "CO2 Emission Reduction Costs in the Residential Sector: Behavioral Parameters in a Bottom-Up Simulation Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-134.
    2. Klinge Jacobsen, Henrik, 1998. "Integrating the bottom-up and top-down approach to energy-economy modelling: the case of Denmark," Energy Economics, Elsevier, vol. 20(4), pages 443-461, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jim Davies & James MacGee & Jacob Wibe, 2011. "The Impact of Climate Change and Climate Policy on the Canadian Economy," University of Western Ontario, Economic Policy Research Institute Working Papers 20112, University of Western Ontario, Economic Policy Research Institute.
    2. Li, G.C. & Huang, G.H. & Lin, Q.G. & Zhang, X.D. & Tan, Q. & Chen, Y.M., 2011. "Development of a GHG-mitigation oriented inexact dynamic model for regional energy system management," Energy, Elsevier, vol. 36(5), pages 3388-3398.
    3. Anastasia Soukhov & Ahmed Foda & Moataz Mohamed, 2022. "Electric Mobility Emission Reduction Policies: A Multi-Objective Optimization Assessment Approach," Energies, MDPI, vol. 15(19), pages 1-21, September.
    4. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    5. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    6. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    7. Vaillancourt, Kathleen & Alcocer, Yuri & Bahn, Olivier & Fertel, Camille & Frenette, Erik & Garbouj, Hichem & Kanudia, Amit & Labriet, Maryse & Loulou, Richard & Marcy, Mathilde & Neji, Yosra & Waaub,, 2014. "A Canadian 2050 energy outlook: Analysis with the multi-regional model TIMES-Canada," Applied Energy, Elsevier, vol. 132(C), pages 56-65.
    8. Murphy, Rose & Rivers, Nic & Jaccard, Mark, 2007. "Hybrid modeling of industrial energy consumption and greenhouse gas emissions with an application to Canada," Energy Economics, Elsevier, vol. 29(4), pages 826-846, July.
    9. Rhodes, Ekaterina & Hoyle, Aaron & McPherson, Madeleine & Craig, Kira, 2022. "Understanding climate policy projections: A scoping review of energy-economy models in Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris Bataille, Mark Jaccard, John Nyboer and Nic Rivers, 2006. "Towards General Equilibrium in a Technology-Rich Model with Empirically Estimated Behavioral Parameters," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 93-112.
    2. Nic Rivers & Mark Jaccard, 2005. "Combining Top-Down and Bottom-Up Approaches to Energy-Economy Modeling Using Discrete Choice Methods," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 83-106.
    3. Jaccard, Mark & Murphy, Rose & Rivers, Nic, 2004. "Energy-environment policy modeling of endogenous technological change with personal vehicles: combining top-down and bottom-up methods," Ecological Economics, Elsevier, vol. 51(1-2), pages 31-46, November.
    4. Rivers, Nic & Jaccard, Mark, 2006. "Useful models for simulating policies to induce technological change," Energy Policy, Elsevier, vol. 34(15), pages 2038-2047, October.
    5. Mark K. Jaccard & John Nyboer & Crhis Bataille & Bryn Sadownik, 2003. "Modeling the Cost of Climate Policy: Distinguishing Between Alternative Cost Definitions and Long-Run Cost Dynamics," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 49-73.
    6. Murphy, Rose & Jaccard, Mark, 2011. "Energy efficiency and the cost of GHG abatement: A comparison of bottom-up and hybrid models for the US," Energy Policy, Elsevier, vol. 39(11), pages 7146-7155.
    7. Omar Shafqat & Elena Malakhtka & Nina Chrobot & Per Lundqvist, 2021. "End Use Energy Services Framework Co-Creation with Multiple Stakeholders—A Living Lab-Based Case Study," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    8. Dellink, Rob & van Ierland, Ekko, 2006. "Pollution abatement in the Netherlands: A dynamic applied general equilibrium assessment," Journal of Policy Modeling, Elsevier, vol. 28(2), pages 207-221, February.
    9. Horne, Matt & Jaccard, Mark & Tiedemann, Ken, 2005. "Improving behavioral realism in hybrid energy-economy models using discrete choice studies of personal transportation decisions," Energy Economics, Elsevier, vol. 27(1), pages 59-77, January.
    10. Salari, Mahmoud & Javid, Roxana J., 2016. "Residential energy demand in the United States: Analysis using static and dynamic approaches," Energy Policy, Elsevier, vol. 98(C), pages 637-649.
    11. Daniel Neves Schmitz Gonçalves & Renata Albergaria de Mello Bandeira & Mariane Gonzalez da Costa & George Vasconcelos Goes & Tássia Faria de Assis & Márcio de Almeida D’Agosto & Isabela Rocha Pombo Le, 2020. "A Multitier Approach to Estimating the Energy Efficiency of Urban Passenger Mobility," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    12. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Working Papers e098, Tokyo Center for Economic Research.
    13. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    14. Marcin Zygmunt & Dariusz Gawin, 2021. "Application of Artificial Neural Networks in the Urban Building Energy Modelling of Polish Residential Building Stock," Energies, MDPI, vol. 14(24), pages 1-15, December.
    15. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    16. Guo, Jinyu & Ma, Jinji & Li, Zhengqiang & Hong, Jin, 2022. "Building a top-down method based on machine learning for evaluating energy intensity at a fine scale," Energy, Elsevier, vol. 255(C).
    17. Giraudet, Louis-Gaëtan & Guivarch, Céline & Quirion, Philippe, 2012. "Exploring the potential for energy conservation in French households through hybrid modeling," Energy Economics, Elsevier, vol. 34(2), pages 426-445.
    18. Charlier, Dorothée & Risch, Anna, 2012. "Evaluation of the impact of environmental public policy measures on energy consumption and greenhouse gas emissions in the French residential sector," Energy Policy, Elsevier, vol. 46(C), pages 170-184.
    19. Jaccard, Mark & Bataille, Chris, 2000. "Estimating future elasticities of substitution for the rebound debate," Energy Policy, Elsevier, vol. 28(6-7), pages 451-455, June.
    20. Lombardi, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2019. "A multi-layer energy modelling methodology to assess the impact of heat-electricity integration strategies: The case of the residential cooking sector in Italy," Energy, Elsevier, vol. 170(C), pages 1249-1260.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:145:y:2003:i:1:p:148-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.