IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!)

Citations for "Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios"

by Thiel, Christian & Perujo, Adolfo & Mercier, Arnaud

For a complete description of this item, click here. For a RSS feed for citations of this item, click here.
as
in new window


  1. Fetene, Gebeyehu M. & Hirte, Georg & Kaplan, Sigal & Prato, Carlo G. & Tscharaktschiew, Stefan, 2016. "The economics of workplace charging," Transportation Research Part B: Methodological, Elsevier, vol. 88(C), pages 93-118.
  2. Berggren, Christian & Magnusson, Thomas, 2012. "Reducing automotive emissions—The potentials of combustion engine technologies and the power of policy," Energy Policy, Elsevier, vol. 41(C), pages 636-643.
  3. Pasaoglu, Guzay & Honselaar, Michel & Thiel, Christian, 2012. "Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe," Energy Policy, Elsevier, vol. 40(C), pages 404-421.
  4. Geir H. Bjertnæs, 2013. "Are tax exemptions for electric cars an efficient climate policy measure?," Discussion Papers 743, Statistics Norway, Research Department.
  5. Daly, Hannah E. & Ó Gallachóir, Brian P., 2012. "Future energy and emissions policy scenarios in Ireland for private car transport," Energy Policy, Elsevier, vol. 51(C), pages 172-183.
  6. Tovar Reaños, Miguel Angel & Sommerfeld, Katrin, 2016. "Fuel for inequality: Distributional effects of environmental reforms on private transport," ZEW Discussion Papers 16-090, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
  7. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
  8. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
  9. Ferreira, João-Pedro & Barata, Eduardo & Ramos, Pedro Nogueira & Cruz, Luis, 2014. "Economic, social, energy and environmental assessment of inter-municipality commuting: The case of Portugal," Energy Policy, Elsevier, vol. 66(C), pages 411-418.
  10. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi & Keith, David R., 2016. "Analysis of supply-push strategies governing the transition to biofuel vehicles in a market-oriented renewable energy system," Energy, Elsevier, vol. 94(C), pages 409-421.
  11. Li, Zhe & Ouyang, Minggao, 2011. "A win-win marginal rent analysis for operator and consumer under battery leasing mode in China electric vehicle market," Energy Policy, Elsevier, vol. 39(6), pages 3222-3237, June.
  12. Opitz, A. & Badami, P. & Shen, L. & Vignarooban, K. & Kannan, A.M., 2017. "Can Li-Ion batteries be the panacea for automotive applications?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 685-692.
  13. Muhammad Aziz & Takuya Oda & Takashi Mitani & Yoko Watanabe & Takao Kashiwagi, 2015. "Utilization of Electric Vehicles and Their Used Batteries for Peak-Load Shifting," Energies, MDPI, Open Access Journal, vol. 8(5), pages 1-19, April.
  14. Dufo-López, Rodolfo & Zubi, Ghassan & Fracastoro, Gian Vincenzo, 2012. "Tecno-economic assessment of an off-grid PV-powered community kitchen for developing regions," Applied Energy, Elsevier, vol. 91(1), pages 255-262.
  15. repec:eee:transa:v:101:y:2017:i:c:p:163-176 is not listed on IDEAS
  16. Siskos, Pelopidas & Capros, Pantelis & De Vita, Alessia, 2015. "CO2 and energy efficiency car standards in the EU in the context of a decarbonisation strategy: A model-based policy assessment," Energy Policy, Elsevier, vol. 84(C), pages 22-34.
  17. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
  18. Achtnicht, Martin & von Graevenitz, Kathrine & Koesler, Simon & Löschel, Andreas & Schoeman, Beaumont & Tovar Reaños, Miguel Angel, 2015. "Including road transport in the EU-ETS: An alternative for the future?," ZEW Expertises, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research, number 111452.
  19. Geir H. Bjertnæs, 2013. "Biofuel mandate versus favourable taxation of electric cars. The case of Norway," Discussion Papers 745, Statistics Norway, Research Department.
  20. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
  21. Loisel, Rodica & Pasaoglu, Guzay & Thiel, Christian, 2014. "Large-scale deployment of electric vehicles in Germany by 2030: An analysis of grid-to-vehicle and vehicle-to-grid concepts," Energy Policy, Elsevier, vol. 65(C), pages 432-443.
  22. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2014. "Modelling market diffusion of electric vehicles with real world driving data: German market and policy options," Working Papers "Sustainability and Innovation" S12/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
  23. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2016. "Quantifying the role of vehicle size, powertrain technology, activity and consumer behaviour on new UK passenger vehicle fleet energy use and emissions under different policy objectives," Applied Energy, Elsevier, vol. 180(C), pages 196-212.
  24. van der Vooren & Eric Brouillat, 2013. "Evaluating CO2 reduction policy portfolios in the automotive sector," Innovation Studies Utrecht (ISU) working paper series 13-01, Utrecht University, Department of Innovation Studies, revised Feb 2013.
  25. Israel García & Luis Javier Miguel, 2012. "Is the Electric Vehicle an Attractive Option for Customers?," Energies, MDPI, Open Access Journal, vol. 5(1), pages 1-21, January.
  26. Rusich, Andrea & Danielis, Romeo, 2013. "The private and social monetary costs and the energy consumption of a car. An estimate for seven cars with different vehicle technologies on sale in Italy," Working Papers 13_1, SIET Società Italiana di Economia dei Trasporti e della Logistica, revised 2013.
  27. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
  28. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2014. "Potential impact of transition to a low-carbon transport system in Iceland," Energy Policy, Elsevier, vol. 69(C), pages 127-142.
  29. Albert, Gila & Glanzer, Yaniv, 2014. "The usefulness of pollution examinations of on-road vehicles—The case of Jerusalem," Transport Policy, Elsevier, vol. 35(C), pages 100-104.
  30. Marletto, Gerardo, 2014. "Car and the city: Socio-technical transition pathways to 2030," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 164-178.
  31. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
  32. Zubi, Ghassan, 2011. "Technology mix alternatives with high shares of wind power and photovoltaics—case study for Spain," Energy Policy, Elsevier, vol. 39(12), pages 8070-8077.
  33. Gnann, Till & Plötz, Patrick & Kühn, André & Wietschel, Martin, 2015. "Modelling market diffusion of electric vehicles with real world driving data – German market and policy options," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 95-112.
  34. Özdemir, Enver Doruk & Hartmann, Niklas, 2012. "Impact of electric range and fossil fuel price level on the economics of plug-in hybrid vehicles and greenhouse gas abatement costs," Energy Policy, Elsevier, vol. 46(C), pages 185-192.
  35. Jochem, Patrick & Babrowski, Sonja & Fichtner, Wolf, 2015. "Assessing CO2 emissions of electric vehicles in Germany in 2030," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 68-83.
  36. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2014. "Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries," Applied Energy, Elsevier, vol. 123(C), pages 129-142.
  37. repec:eee:appene:v:199:y:2017:i:c:p:447-465 is not listed on IDEAS
  38. Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
  39. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
  40. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
  41. Newbery, David & Strbac, Goran, 2016. "What is needed for battery electric vehicles to become socially cost competitive?," Economics of Transportation, Elsevier, vol. 5(C), pages 1-11.
  42. Zubaryeva, Alyona & Thiel, Christian & Zaccarelli, Nicola & Barbone, Enrico & Mercier, Arnaud, 2012. "Spatial multi-criteria assessment of potential lead markets for electrified vehicles in Europe," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(9), pages 1477-1489.
  43. Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "A Feasibility Test on Adopting Electric Vehicles to Serve as Taxis in Daejeon Metropolitan City of South Korea," Sustainability, MDPI, Open Access Journal, vol. 8(9), pages 1-18, September.
  44. Gnann, Till & Plötz, Patrick & Funke, Simon & Wietschel, Martin, 2014. "What is the market potential of electric vehicles as commercial passenger cars? A case study from Germany," Working Papers "Sustainability and Innovation" S14/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
  45. Kihm, Alexander & Trommer, Stefan, 2014. "The new car market for electric vehicles and the potential for fuel substitution," Energy Policy, Elsevier, vol. 73(C), pages 147-157.
  46. Ajanovic, Amela & Haas, Reinhard, 2016. "Dissemination of electric vehicles in urban areas: Major factors for success," Energy, Elsevier, vol. 115(P2), pages 1451-1458.
  47. Lévay, Petra Zsuzsa & Drossinos, Yannis & Thiel, Christian, 2017. "The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership," Energy Policy, Elsevier, vol. 105(C), pages 524-533.
  48. Bubeck, Steffen & Tomaschek, Jan & Fahl, Ulrich, 2016. "Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany," Transport Policy, Elsevier, vol. 50(C), pages 63-77.
  49. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
  50. Gass, V. & Schmidt, J. & Schmid, E., 2014. "Analysis of alternative policy instruments to promote electric vehicles in Austria," Renewable Energy, Elsevier, vol. 61(C), pages 96-101.
  51. G. Marletto, 2013. "Car and the city: Socio-technical pathways to 2030," Working Paper CRENoS 201306, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
  52. Rootzén, Johan & Johnsson, Filip, 2016. "Paying the full price of steel – Perspectives on the cost of reducing carbon dioxide emissions from the steel industry," Energy Policy, Elsevier, vol. 98(C), pages 459-469.
  53. Katrašnik, Tomaž, 2013. "Impact of vehicle propulsion electrification on Well-to-Wheel CO2 emissions of a medium duty truck," Applied Energy, Elsevier, vol. 108(C), pages 236-247.
  54. Seixas, J. & Simões, S. & Dias, L. & Kanudia, A. & Fortes, P. & Gargiulo, M., 2015. "Assessing the cost-effectiveness of electric vehicles in European countries using integrated modeling," Energy Policy, Elsevier, vol. 80(C), pages 165-176.
  55. Rusich, Andrea & Danielis, Romeo, 2013. "The private and social monetary costs and the energy consumption of a car. An estimate for seven cars with different vehicle technologies on sale in Italy," Working Papers 1301, SIET Società Italiana di Economia dei Trasporti e della Logistica, revised 2013.
  56. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2014. "Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles," Applied Energy, Elsevier, vol. 124(C), pages 44-61.
  57. Jens Weinmann & J�r�me MASSIANI, 2012. "Electric cars as a means to reduce greenhouse gas emissions: methods, results and policy implications in Germany," Working Papers 2012_21, Department of Economics, University of Venice "Ca' Foscari", revised 2012.
  58. Lin, Boqiang & Tan, Ruipeng, 2017. "Estimation of the environmental values of electric vehicles in Chinese cities," Energy Policy, Elsevier, vol. 104(C), pages 221-229.
  59. Zhang, Xiang, 2014. "Reference-dependent electric vehicle production strategy considering subsidies and consumer trade-offs," Energy Policy, Elsevier, vol. 67(C), pages 422-430.
This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.