IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v35y2007i12p6445-6456.html
   My bibliography  Save this item

Scenario analysis on CO2 emissions reduction potential in China's electricity sector

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zhu, Bing & Zhou, Wenji & Hu, Shanying & Li, Qiang & Griffy-Brown, Charla & Jin, Yong, 2010. "CO2 emissions and reduction potential in China’s chemical industry," Energy, Elsevier, vol. 35(12), pages 4663-4670.
  2. Xiaopeng Guo & Xiaodan Guo & Jiahai Yuan, 2014. "Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China," Sustainability, MDPI, vol. 7(1), pages 1-21, December.
  3. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
  4. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
  5. Wang, Peng & Chen, Li-Yang & Ge, Jian-Ping & Cai, Wenjia & Chen, Wei-Qiang, 2019. "Incorporating critical material cycles into metal-energy nexus of China’s 2050 renewable transition," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  6. Wang, Junfeng & He, Shutong & Qiu, Ye & Liu, Nan & Li, Yongjian & Dong, Zhanfeng, 2018. "Investigating driving forces of aggregate carbon intensity of electricity generation in China," Energy Policy, Elsevier, vol. 113(C), pages 249-257.
  7. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
  8. Juntueng, Sirintip & Towprayoon, Sirintornthep & Chiarakorn, Siriluk, 2014. "Energy and carbon dioxide intensity of Thailand's steel industry and greenhouse gas emission projection toward the year 2050," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 46-56.
  9. Gambhir, Ajay & Schulz, Niels & Napp, Tamaryn & Tong, Danlu & Munuera, Luis & Faist, Mark & Riahi, Keywan, 2013. "A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050," Energy Policy, Elsevier, vol. 59(C), pages 614-632.
  10. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
  11. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
  12. Xiao, Xiao & Jiang, Zhenjiao & Owen, Daniel & Schrank, Christoph, 2016. "Numerical simulation of a high-temperature aquifer thermal energy storage system coupled with heating and cooling of a thermal plant in a cold region, China," Energy, Elsevier, vol. 112(C), pages 443-456.
  13. Frauke Urban & Giles Mohan & Sarah Cook, 2013. "China as a new shaper of international development: the environmental implications," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(2), pages 257-263, April.
  14. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
  15. Dagher, Leila & Ruble, Isabella, 2011. "Modeling Lebanon’s electricity sector: Alternative scenarios and their implications," Energy, Elsevier, vol. 36(7), pages 4315-4326.
  16. Borba, Bruno S.M.C. & Lucena, André F.P. & Rathmann, Régis & Costa, Isabella V.L. & Nogueira, Larissa P.P. & Rochedo, Pedro R.R. & Castelo Branco, David A. & Júnior, Mauricio F.H. & Szklo, Alexandre &, 2012. "Energy-related climate change mitigation in Brazil: Potential, abatement costs and associated policies," Energy Policy, Elsevier, vol. 49(C), pages 430-441.
  17. Qian Zhou & Helmut Yabar & Takeshi Mizunoya & Yoshiro Higano, 2017. "Evaluation of Integrated Air Pollution and Climate Change Policies: Case Study in the Thermal Power Sector in Chongqing City, China," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
  18. Özer, Betül & Görgün, Erdem & İncecik, Selahattin, 2013. "The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030," Energy, Elsevier, vol. 49(C), pages 395-403.
  19. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
  20. Shan, Yuli & Liu, Zhu & Guan, Dabo, 2016. "CO2 emissions from China’s lime industry," Applied Energy, Elsevier, vol. 166(C), pages 245-252.
  21. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
  22. El Fadel, M. & Rachid, G. & El-Samra, R. & Bou Boutros, G. & Hashisho, J., 2013. "Emissions reduction and economic implications of renewable energy market penetration of power generation for residential consumption in the MENA region," Energy Policy, Elsevier, vol. 52(C), pages 618-627.
  23. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.
  24. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
  25. Lin Zhu & Lichun He & Peipei Shang & Yingchun Zhang & Xiaojun Ma, 2018. "Influencing Factors and Scenario Forecasts of Carbon Emissions of the Chinese Power Industry: Based on a Generalized Divisia Index Model and Monte Carlo Simulation," Energies, MDPI, vol. 11(9), pages 1-26, September.
  26. Yu, Fanxian & Chen, Jining & Sun, Fu & Zeng, Siyu & Wang, Can, 2011. "Trend of technology innovation in China's coal-fired electricity industry under resource and environmental constraints," Energy Policy, Elsevier, vol. 39(3), pages 1586-1599, March.
  27. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
  28. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
  29. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
  30. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
  31. Fuquan Zhao & Feiqi Liu & Han Hao & Zongwei Liu, 2020. "Carbon Emission Reduction Strategy for Energy Users in China," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
  32. Wang, Juan & Hu, Mingming & Tukker, Arnold & Rodrigues, João F.D., 2019. "The impact of regional convergence in energy-intensive industries on China's CO2 emissions and emission goals," Energy Economics, Elsevier, vol. 80(C), pages 512-523.
  33. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
  34. Hu, Yu & Monroy, Carlos Rodríguez, 2012. "Chinese energy and climate policies after Durban: Save the Kyoto Protocol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3243-3250.
  35. Drielli Peyerl & Mariana Oliveira Barbosa & Mariana Ciotta & Maria Rogieri Pelissari & Evandro Mateus Moretto, 2022. "Linkages between the Promotion of Renewable Energy Policies and Low-Carbon Transition Trends in South America’s Electricity Sector," Energies, MDPI, vol. 15(12), pages 1-18, June.
  36. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  37. Guo, Z.C. & Fu, Z.X., 2010. "Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China," Energy, Elsevier, vol. 35(11), pages 4356-4360.
  38. Zhang, Jiawei & Liu, Miaomiao & Bi, Jun, 2022. "Urban greenhouse gas emission peaking paths and embedded health co-benefits: A multicases comparison study in China," Applied Energy, Elsevier, vol. 311(C).
  39. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
  40. Wen, Zong-guo & Di, Jing-han & Yu, Xue-wei & Zhang, Xuan, 2017. "Analyses of CO2 mitigation roadmap in China’s power industry: Using a Backcasting Model," Applied Energy, Elsevier, vol. 205(C), pages 644-653.
  41. Wang, Yanxiang & Ali Almazrooei, Shaikha & Kapsalyamova, Zhanna & Diabat, Ali & Tsai, I-Tsung, 2016. "Utility subsidy reform in Abu Dhabi: A review and a Computable General Equilibrium analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1352-1362.
  42. Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
  43. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
  44. Wang, Jianjun & Li, Li, 2016. "Sustainable energy development scenario forecasting and energy saving policy analysis of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 718-724.
  45. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
  46. Zongguo Wen & Xuan Zhang & Xuewei Yu & Jinghan Di, 2015. "Technology options for reducing CO 2 in China's electricity sector in 2010–2030: From the perspective of internal and social costs," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 5(6), pages 772-785, December.
  47. Xie, Qiwei & Hu, Ping & Jiang, An & Li, Yongjun, 2019. "Carbon emissions allocation based on satisfaction perspective and data envelopment analysis," Energy Policy, Elsevier, vol. 132(C), pages 254-264.
  48. Zongguo Wen & Xuan Zhang & Jining Chen & Qilu Tan & Xueying Zhang, 2014. "Forecasting Co2 Mitigation and Policy Options for China's Key Sectors in 2010–2030," Energy & Environment, , vol. 25(3-4), pages 635-659, April.
  49. He, Ling-Yun & Chen, Yu, 2013. "Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission mitigation for road transportation sector in China," Transport Policy, Elsevier, vol. 25(C), pages 30-40.
  50. Hu, Junfeng & Kahrl, Fredrich & Yan, Qingyou & Wang, Xiaoya, 2012. "The impact of China's differential electricity pricing policy on power sector CO2 emissions," Energy Policy, Elsevier, vol. 45(C), pages 412-419.
  51. Pauliuk, Stefan & Wang, Tao & Müller, Daniel B., 2013. "Steel all over the world: Estimating in-use stocks of iron for 200 countries," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 22-30.
  52. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
  53. Mischke, Peggy & Karlsson, Kenneth B., 2014. "Modelling tools to evaluate China's future energy system – A review of the Chinese perspective," Energy, Elsevier, vol. 69(C), pages 132-143.
  54. Zuoxi Liu & Huijuan Dong & Yong Geng & Chengpeng Lu & Wanxia Ren, 2014. "Insights into the Regional Greenhouse Gas (GHG) Emission of Industrial Processes: A Case Study of Shenyang, China," Sustainability, MDPI, vol. 6(6), pages 1-17, June.
  55. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
  56. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
  57. Yabar, Helmut & Hara, Keishiro & Uwasu, Michinori, 2012. "Comparative assessment of the co-evolution of environmental indicator systems in Japan and China," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 43-51.
  58. Li, Huanan & Wei, Yi-Ming, 2015. "Is it possible for China to reduce its total CO2 emissions?," Energy, Elsevier, vol. 83(C), pages 438-446.
  59. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
  60. Rentizelas, Athanasios & Georgakellos, Dimitrios, 2014. "Incorporating life cycle external cost in optimization of the electricity generation mix," Energy Policy, Elsevier, vol. 65(C), pages 134-149.
  61. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
  62. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
  63. Wang, Peng & Jiang, Zeyi & Geng, Xinyi & Hao, Shiyu & Zhang, Xinxin, 2014. "Quantification of Chinese steel cycle flow: Historical status and future options," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 191-199.
  64. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
  65. Feiqi Liu & Fuquan Zhao & Zongwei Liu & Han Hao, 2018. "China’s Electric Vehicle Deployment: Energy and Greenhouse Gas Emission Impacts," Energies, MDPI, vol. 11(12), pages 1-19, November.
  66. Xu, Bin & Lin, Boqiang, 2021. "Investigating spatial variability of CO2 emissions in heavy industry: Evidence from a geographically weighted regression model," Energy Policy, Elsevier, vol. 149(C).
  67. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
  68. Wang, Zhaojing & Jiang, Qingzhe & Dong, Kangyin & Mubarik, Muhammad Shujaat & Dong, Xiucheng, 2020. "Decomposition of the US CO2 emissions and its mitigation potential: An aggregate and sectoral analysis," Energy Policy, Elsevier, vol. 147(C).
  69. Kachoee, Mohammad Sadegh & Salimi, Mohsen & Amidpour, Majid, 2018. "The long-term scenario and greenhouse gas effects cost-benefit analysis of Iran's electricity sector," Energy, Elsevier, vol. 143(C), pages 585-596.
  70. Ates, Seyithan A., 2015. "Energy efficiency and CO2 mitigation potential of the Turkish iron and steel industry using the LEAP (long-range energy alternatives planning) system," Energy, Elsevier, vol. 90(P1), pages 417-428.
  71. Li, Ying & Lukszo, Zofia & Weijnen, Margot, 2015. "The implications of CO2 price for China’s power sector decarbonization," Applied Energy, Elsevier, vol. 146(C), pages 53-64.
  72. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
  73. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
  74. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
  75. Peng Wang & Meng Li, 2019. "Scenario Analysis in the Electric Power Industry under the Implementation of the Electricity Market Reform and a Carbon Policy in China," Energies, MDPI, vol. 12(11), pages 1-26, June.
  76. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Synergy of air pollutants and greenhouse gas emissions of Chinese industries: A critical assessment of energy models," Energy, Elsevier, vol. 93(P2), pages 2436-2450.
  77. Galiya Movkebayeva & Aliya Aktymbayeva & Yuliya Tyurina & Nurken Baikadamov & Kamar Beketova & Marija Troyanskaya & Sholpan Smagulova & Aizhan Imangaliyeva, 2020. "Energy Security and Sustainability in Eurasian Economic Union in the Terms of Economic Growth: The Case of Kazakhstan s Energy Sector up to 2040 Perspectives," International Journal of Energy Economics and Policy, Econjournals, vol. 10(2), pages 497-503.
  78. Lin, Boqiang & Wang, Xiaolei, 2014. "Promoting energy conservation in China's iron & steel sector," Energy, Elsevier, vol. 73(C), pages 465-474.
  79. Li Li & Yalin Lei & Dongyang Pan, 2016. "Study of CO 2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 957-970, March.
  80. Ansari, Nastaran & Seifi, Abbas, 2012. "A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry," Energy, Elsevier, vol. 43(1), pages 334-343.
  81. Guo, Zheng & Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian & Sun, Yong, 2017. "A multi-region load dispatch model for the long-term optimum planning of China’s electricity sector," Applied Energy, Elsevier, vol. 185(P1), pages 556-572.
  82. Castelo Branco, David A. & Szklo, Alexandre & Gomes, Gabriel & Borba, Bruno S.M.C. & Schaeffer, Roberto, 2011. "Abatement costs of CO2 emissions in the Brazilian oil refining sector," Applied Energy, Elsevier, vol. 88(11), pages 3782-3790.
  83. Cai, Liya & Luo, Ji & Wang, Minghui & Guo, Jianfeng & Duan, Jinglin & Li, Jingtao & Li, Shuo & Liu, Liting & Ren, Dangpei, 2023. "Pathways for municipalities to achieve carbon emission peak and carbon neutrality: A study based on the LEAP model," Energy, Elsevier, vol. 262(PB).
  84. Cai, Wenjia & Wang, Can & Chen, Jining, 2010. "Revisiting CO2 mitigation potential and costs in China's electricity sector," Energy Policy, Elsevier, vol. 38(8), pages 4209-4213, August.
  85. Hsu, Chung-Chun & Lo, Shang-Lien, 2017. "The potential for carbon abatement in Taiwan’s steel industry and an analysis of carbon abatement trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1312-1323.
  86. Liang Chen & Zhifeng Yang & Bin Chen, 2013. "Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-9, October.
  87. Xu, Tengfang & Karali, Nihan & Sathaye, Jayant, 2014. "Undertaking high impact strategies: The role of national efficiency measures in long-term energy and emission reduction in steel making," Applied Energy, Elsevier, vol. 122(C), pages 179-188.
  88. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
  89. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
  90. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
  91. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
  92. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
  93. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
  94. Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
  95. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
  96. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
  97. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
  98. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
  99. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
  100. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
  101. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
  102. Lee, Seungmoon & Park, Jin-Won & Song, Ho-Jun & Maken, Sanjeev & Filburn, Tom, 2008. "Implication of CO2 capture technologies options in electricity generation in Korea," Energy Policy, Elsevier, vol. 36(1), pages 326-334, January.
  103. Li Li & Jianjun Wang, 2015. "The Effects of Coal Switching and Improvements in Electricity Production Efficiency and Consumption on CO 2 Mitigation Goals in China," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
  104. Guo, Zheng & Ma, Linwei & Liu, Pei & Jones, Ian & Li, Zheng, 2016. "A multi-regional modelling and optimization approach to China's power generation and transmission planning," Energy, Elsevier, vol. 116(P2), pages 1348-1359.
  105. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2016. "The “cost of not doing” energy planning: The Spanish energy bubble," Energy, Elsevier, vol. 101(C), pages 434-446.
  106. Wang, Can & Lin, Jie & Cai, Wenjia & Liao, Hua, 2014. "China׳s carbon mitigation strategies: Enough?," Energy Policy, Elsevier, vol. 73(C), pages 47-56.
  107. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 41(C), pages 374-392.
  108. Xuan, Yanni & Yue, Qiang, 2016. "Forecast of steel demand and the availability of depreciated steel scrap in China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 1-12.
  109. Lingling Wang & Tsunemi Watanabe & Zhiwei Xu, 2015. "Monetization of External Costs Using Lifecycle Analysis—A Comparative Case Study of Coal-Fired and Biomass Power Plants in Northeast China," Energies, MDPI, vol. 8(2), pages 1-28, February.
  110. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  111. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Siqiang, 2012. "Sectoral crediting mechanism: How far China has to go," Energy Policy, Elsevier, vol. 48(C), pages 770-778.
  112. Qi Liu & Jiahao Liu & Dunhu Liu, 2018. "Intelligent Multi-Objective Public Charging Station Location with Sustainable Objectives," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
  113. Zhang, Chao & Chen, Jining & Wen, Zongguo, 2012. "Alternative policy assessment for water pollution control in China's pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 66(C), pages 15-26.
  114. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
  115. Li, Yongliang & Cao, Hui & Wang, Shuhao & Jin, Yi & Li, Dacheng & Wang, Xiang & Ding, Yulong, 2014. "Load shifting of nuclear power plants using cryogenic energy storage technology," Applied Energy, Elsevier, vol. 113(C), pages 1710-1716.
  116. Alshammari, Yousef M. & Sarathy, S. Mani, 2017. "Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices," Energy Policy, Elsevier, vol. 101(C), pages 502-511.
  117. Laha, Priyanka & Chakraborty, Basab, 2017. "Energy model – A tool for preventing energy dysfunction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 95-114.
  118. Khanna, Nina Zheng & Zhou, Nan & Fridley, David & Ke, Jing, 2016. "Quantifying the potential impacts of China's power-sector policies on coal input and CO2 emissions through 2050: A bottom-up perspective," Utilities Policy, Elsevier, vol. 41(C), pages 128-138.
  119. Lin, Boqiang & Xu, Bin, 2020. "Effective ways to reduce CO2 emissions from China's heavy industry? Evidence from semiparametric regression models," Energy Economics, Elsevier, vol. 92(C).
  120. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.