IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v87y2014icp191-199.html
   My bibliography  Save this article

Quantification of Chinese steel cycle flow: Historical status and future options

Author

Listed:
  • Wang, Peng
  • Jiang, Zeyi
  • Geng, Xinyi
  • Hao, Shiyu
  • Zhang, Xinxin

Abstract

China is the largest steel producer and consumer around the world. Quantifying the Chinese steel flow from cradle to grave can assist this industry to fully understand its historical status and future options on production route transformation, capacity planning, scrap availability, resource and energy consumption. With the help of the systematic methods combined dynamic MFA (material flow analysis) with scenario analysis, the Chinese steel cycle during the first half of the 21st century was quantified and several thought-provoking conclusions were draw. In the past decade, lots of pig iron or molten iron was fed into EAF (electric arc furnace) and the scrap usage of EAF fluctuated slightly. Thus, the real scrap-EAF route share is much lower than the EAF production share. On the other hand, we reconfirmed that the scrap supply in China will rise significantly in the future. Meanwhile, the secondary production route share will grow sharply and exceed primary production share before or after 2050 depending on our options. The scrap recycling rate and construction's lifetime play a vital role in this trend. In the end, an intensive discussion on production capacities’ adjustment and energy and resource consumption was conducted and relative policy suggestions were given. It is worth noting that scrap usage is crucial to future energy saving and emissions reduction of Chinese steel sector and its energy consumption might peak as early as 2015.

Suggested Citation

  • Wang, Peng & Jiang, Zeyi & Geng, Xinyi & Hao, Shiyu & Zhang, Xinxin, 2014. "Quantification of Chinese steel cycle flow: Historical status and future options," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 191-199.
  • Handle: RePEc:eee:recore:v:87:y:2014:i:c:p:191-199
    DOI: 10.1016/j.resconrec.2014.04.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914000895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.04.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huh, Kwang-Sook, 2011. "Steel consumption and economic growth in Korea: Long-term and short-term evidence," Resources Policy, Elsevier, vol. 36(2), pages 107-113, June.
    2. Guo, Z.C. & Fu, Z.X., 2010. "Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China," Energy, Elsevier, vol. 35(11), pages 4356-4360.
    3. Park, Jeong-a & Hong, Seok-jin & Kim, Ik & Lee, Ji-yong & Hur, Tak, 2011. "Dynamic material flow analysis of steel resources in Korea," Resources, Conservation & Recycling, Elsevier, vol. 55(4), pages 456-462.
    4. David G. Tarr, 1988. "The Steel Crisis in the United States and the European Community: Causes and Adjustments," NBER Chapters, in: Issues in US-EC Trade Relations, pages 173-200, National Bureau of Economic Research, Inc.
    5. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    6. Pauliuk, Stefan & Wang, Tao & Müller, Daniel B., 2013. "Steel all over the world: Estimating in-use stocks of iron for 200 countries," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 22-30.
    7. Huang, Tao & Shi, Feng & Tanikawa, Hiroki & Fei, Jinling & Han, Ji, 2013. "Materials demand and environmental impact of buildings construction and demolition in China based on dynamic material flow analysis," Resources, Conservation & Recycling, Elsevier, vol. 72(C), pages 91-101.
    8. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa, 2013. "Long-term global availability of steel scrap," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 81-91.
    9. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    10. He, Feng & Zhang, Qingzhi & Lei, Jiasu & Fu, Weihui & Xu, Xiaoning, 2013. "Energy efficiency and productivity change of China’s iron and steel industry: Accounting for undesirable outputs," Energy Policy, Elsevier, vol. 54(C), pages 204-213.
    11. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    12. Huang, Chu-Long & Vause, Jonathan & Ma, Hwong-Wen & Yu, Chang-Ping, 2012. "Using material/substance flow analysis to support sustainable development assessment: A literature review and outlook," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 104-116.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    2. Yue, Qiang & Chai, Xicui & Zhao, Feng & He, Junhao & Li, Yun & Wang, Heming, 2023. "Analysis of iron in-use stocks: Evidence from the provincial and municipal levels in China," Resources Policy, Elsevier, vol. 80(C).
    3. Hanspeter Wieland & Manfred Lenzen & Arne Geschke & Jacob Fry & Dominik Wiedenhofer & Nina Eisenmenger & Johannes Schenk & Stefan Giljum, 2022. "The PIOLab: Building global physical input–output tables in a virtual laboratory," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 683-703, June.
    4. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
    5. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    6. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    7. Lanfang, Liu & Issam, Srour & Chong, Wai K. & Christopher, Hermreck, 2015. "Integrating G2G, C2C and resource flow analysis into life cycle assessment framework: A case of construction steel’s resource loop," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 143-152.
    8. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
    9. Fu, Xinkai & Ueland, Stian M. & Olivetti, Elsa, 2017. "Econometric modeling of recycled copper supply," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 219-226.
    10. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    11. Wang, Peng & Zhao, Shen & Dai, Tao & Peng, Kun & Zhang, Qi & Li, Jiashuo & Chen, Wei-Qiang, 2022. "Regional disparities in steel production and restrictions to progress on global decarbonization: A cross-national analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Yang, Ping & Gao, Xiangyun & Zhao, Yiran & Jia, Nanfei & Dong, Xiaojuan, 2021. "Lithium resource allocation optimization of the lithium trading network based on material flow," Resources Policy, Elsevier, vol. 74(C).
    13. Xuan, Yanni & Yue, Qiang, 2016. "Forecast of steel demand and the availability of depreciated steel scrap in China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 1-12.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    2. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    3. Kermeli, Katerina & Edelenbosch, Oreane Y. & Crijns-Graus, Wina & van Ruijven, Bas J. & van Vuuren, Detlef P. & Worrell, Ernst, 2022. "Improving material projections in Integrated Assessment Models: The use of a stock-based versus a flow-based approach for the iron and steel industry," Energy, Elsevier, vol. 239(PE).
    4. Lin, Boqiang & Wang, Xiaolei, 2014. "Promoting energy conservation in China's iron & steel sector," Energy, Elsevier, vol. 73(C), pages 465-474.
    5. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    6. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    7. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
    8. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    9. Mathieu, Valentin & Roda, Jean-Marc, 2023. "A meta-analysis on wood trade flow modeling concepts," Forest Policy and Economics, Elsevier, vol. 149(C).
    10. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    11. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    12. Pauliuk, Stefan & Wang, Tao & Müller, Daniel B., 2013. "Steel all over the world: Estimating in-use stocks of iron for 200 countries," Resources, Conservation & Recycling, Elsevier, vol. 71(C), pages 22-30.
    13. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    14. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
    15. Li Li & Yalin Lei & Dongyang Pan, 2016. "Study of CO 2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 957-970, March.
    16. Zuoxi Liu & Huijuan Dong & Yong Geng & Chengpeng Lu & Wanxia Ren, 2014. "Insights into the Regional Greenhouse Gas (GHG) Emission of Industrial Processes: A Case Study of Shenyang, China," Sustainability, MDPI, vol. 6(6), pages 1-17, June.
    17. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    18. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    19. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    20. Cao, Zhi & Shen, Lei & Liu, Litao & Zhao, Jianan & Zhong, Shuai & Kong, Hanxiao & Sun, Yanzhi, 2017. "Estimating the in-use cement stock in China: 1920–2013," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 21-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:87:y:2014:i:c:p:191-199. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.