IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system

Listed author(s):
  • Halkos, George
  • Tzeremes, Panagiotis

This paper by using the Long range Energy Alternatives Planning System (LEAP) evaluates the progress towards sustainability with long-term scenarios for the energy map of Southeast Balkans, particularly the three countries of Bulgaria, Greece and Romania. The main objective of this work is to examine and compare scenarios based on organizations reports, so that countries achieve the objectives of the European Commission (abating 40% of greenhouse gas emissions by 2030 and 80-95% by 2050) and finally to observe the contribution of each country to reducing greenhouse gas (GHG) emissions. The results reveal that the main challenge for the Southeast Balkans policy makers will be the energy policies associated with the renewable energy usage. It appears that under the seven different energy policy scenarios the higher the participation of renewable energy the higher the reduction of GHG emissions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mpra.ub.uni-muenchen.de/65280/1/MPRA_paper_65280.pdf
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 65280.

as
in new window

Length:
Date of creation: 2015
Handle: RePEc:pra:mprapa:65280
Contact details of provider: Postal:
Ludwigstraße 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page: https://mpra.ub.uni-muenchen.de

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
  2. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
  3. Halkos, George & Tzeremes, Nickolaos, 2013. "Renewable energy consumption and economic efficiency: Evidence from European countries," MPRA Paper 44136, University Library of Munich, Germany.
  4. Dagoumas, A.S. & Panapakidis, I.P. & Papagiannis, G.K. & Dokopoulos, P.S., 2008. "Post-Kyoto energy consumption strategies for the Greek interconnected electric system," Energy Policy, Elsevier, vol. 36(6), pages 1980-1999, June.
  5. Bautista, Santiago, 2012. "A sustainable scenario for Venezuelan power generation sector in 2050 and its costs," Energy Policy, Elsevier, vol. 44(C), pages 331-340.
  6. Halkos, George & Kevork, Ilias & Galani, Georgia & Tzeremes, Panagiotis, 2014. "An analysis of long-term scenarios for the transition to renewable energy in Greece," MPRA Paper 59975, University Library of Munich, Germany.
  7. Mondal, Md. Alam Hossain & Boie, Wulf & Denich, Manfred, 2010. "Future demand scenarios of Bangladesh power sector," Energy Policy, Elsevier, vol. 38(11), pages 7416-7426, November.
  8. Pukšec, Tomislav & Mathiesen, Brian Vad & Novosel, Tomislav & Duić, Neven, 2014. "Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia," Energy, Elsevier, vol. 76(C), pages 198-209.
  9. Kalampalikas, Nikolaos G. & Pilavachi, Petros A., 2010. "A model for the development of a power production system in Greece, Part II: Where RES meet EU targets," Energy Policy, Elsevier, vol. 38(11), pages 6514-6528, November.
  10. Islas, Jorge & Grande, Genice, 2008. "Abatement costs of SO2-control options in the Mexican electric-power sector," Applied Energy, Elsevier, vol. 85(2-3), pages 80-94, February.
  11. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
  12. Halkos, George & Kevork, Ilias & Tziourtzioumis, Chris, 2014. "Greenhouse gas emissions and marginal abatement cost curves for the road transport in Greece," MPRA Paper 61032, University Library of Munich, Germany.
  13. Amous, Samir & Revet, Dominique & Sokona, Youba, 1994. "Greenhouse gas abatement in Senegal A case study of least-cost options," Energy Policy, Elsevier, vol. 22(11), pages 947-954, November.
  14. Halkos, George & Kevork, Ilias & Tziourtzioumis, Chris, 2014. "Emissions and abatement costs for the passenger cars sector in Greece," MPRA Paper 60197, University Library of Munich, Germany.
  15. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
  16. Gota, Dan-Ioan & Lund, Henrik & Miclea, Liviu, 2011. "A Romanian energy system model and a nuclear reduction strategy," Energy, Elsevier, vol. 36(11), pages 6413-6419.
  17. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
  18. Agoris, D. & Tigas, K. & Giannakidis, G. & Siakkis, F. & Vassos, S. & Vassilakos, N. & Kilias, V. & Damassiotis, M., 2004. "An analysis of the Greek energy system in view of the Kyoto commitments," Energy Policy, Elsevier, vol. 32(18), pages 2019-2033, December.
  19. Mulugetta, Yacob & Mantajit, Nathinee & Jackson, Tim, 2007. "Power sector scenarios for Thailand: An exploratory analysis 2002-2022," Energy Policy, Elsevier, vol. 35(6), pages 3256-3269, June.
  20. He, K. & Lei, Y. & Pan, X. & Zhang, Y. & Zhang, Q. & Chen, D., 2010. "Co-benefits from energy policies in China," Energy, Elsevier, vol. 35(11), pages 4265-4272.
  21. George Halkos & Nickolaos Tzeremes & Panayiotis Tzeremes, 2015. "A nonparametric approach for evaluating long-term energy policy scenarios: an application to the Greek energy system," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-14, December.
  22. Takase, Kae & Suzuki, Tatsujiro, 2011. "The Japanese energy sector: Current situation, and future paths," Energy Policy, Elsevier, vol. 39(11), pages 6731-6744.
  23. Zhang, Qingyu & Tian, Weili & Zheng, Yingyue & Zhang, Lili, 2010. "Fuel consumption from vehicles of China until 2030 in energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6860-6867, November.
  24. Gómez, Antonio & Dopazo, César & Fueyo, Norberto, 2014. "The causes of the high energy intensity of the Kazakh economy: A characterization of its energy system," Energy, Elsevier, vol. 71(C), pages 556-568.
  25. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
  26. Roinioti, Argiro & Koroneos, Christopher & Wangensteen, Ivar, 2012. "Modeling the Greek energy system: Scenarios of clean energy use and their implications," Energy Policy, Elsevier, vol. 50(C), pages 711-722.
  27. Christov, Christo & Simeonova, Katja & Todorova, Sevdalina & Krastev, Vladimir, 1997. "Assessment of mitigation options for the energy system in Bulgaria," Applied Energy, Elsevier, vol. 56(3-4), pages 299-308, March.
  28. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2014. "Abating CO2 emissions in the Greek energy and industry sectors," MPRA Paper 60807, University Library of Munich, Germany.
  29. Giatrakos, Georgios P. & Tsoutsos, Theocharis D. & Zografakis, Nikos, 2009. "Sustainable power planning for the island of Crete," Energy Policy, Elsevier, vol. 37(4), pages 1222-1238, April.
  30. Rampidis, I.M. & Giannakopoulos, D. & Bergeles, G.C., 2010. "Insight into the Greek electric sector and energy planning with mature technologies and fuel diversification," Energy Policy, Elsevier, vol. 38(8), pages 4076-4088, August.
  31. Dagoumas, A.S. & Kalaitzakis, E. & Papagiannis, G.K. & Dokopoulos, P.S., 2007. "A post-Kyoto analysis of the Greek electric sector," Energy Policy, Elsevier, vol. 35(3), pages 1551-1563, March.
  32. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
  33. Kalampalikas, Nikolaos G. & Pilavachi, Petros A., 2010. "A model for the development of a power production system in Greece, Part I: Where RES do not meet EU targets," Energy Policy, Elsevier, vol. 38(11), pages 6499-6513, November.
  34. Özer, Betül & Görgün, Erdem & İncecik, Selahattin, 2013. "The scenario analysis on CO2 emission mitigation potential in the Turkish electricity sector: 2006–2030," Energy, Elsevier, vol. 49(C), pages 395-403.
  35. Voumvoulakis, Emmanouil & Asimakopoulou, Georgia & Danchev, Svetoslav & Maniatis, George & Tsakanikas, Aggelos, 2012. "Large scale integration of intermittent renewable energy sources in the Greek power sector," Energy Policy, Elsevier, vol. 50(C), pages 161-173.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:65280. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.