IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v66y2014icp615-629.html
   My bibliography  Save this article

Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila

Author

Listed:
  • Ahanchian, Mohammad
  • Biona, Jose Bienvenido Manuel

Abstract

Transportation contributes to resource depletion and has other negative impacts on the environment. The present study presents models of energy demand and environmental emissions for the land transportation sector in Metro Manila, Philippines from 2010 to 2040 using the “Long Range Energy Alternatives Planning (LEAP)” tool. The study projected energy demand and CO2, CO, HC, NOx and PM10 emissions for Business-As-Usual (BAU) and alternative scenarios and compared the results while aiming to determine optimal transportation policies to reduce energy demand and emissions. The results indicated that the adoption of EURO 4 emission standards provides the greatest reduction in energy use at 10.8%, while the best cases for the various gas emissions were split among different options. In addition, a combination of all of the alternatives is expected to lower energy use by 27.8% and to reduce CO2, CO, HC, NOx and PM10 by 30.3%, 60.3%, 59.0%, 48.2% and 66.4%, respectively. The analytical framework employed herein could be applied to other cities to evaluate and prioritize strategies to reduce future energy requirements and emissions.

Suggested Citation

  • Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
  • Handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:615-629
    DOI: 10.1016/j.enpol.2013.11.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513011336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.11.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Wenjia & Wang, Can & Chen, Jining & Wang, Ke & Zhang, Ying & Lu, Xuedu, 2008. "Comparison of CO2 emission scenarios and mitigation opportunities in China's five sectors in 2020," Energy Policy, Elsevier, vol. 36(3), pages 1181-1194, March.
    2. El-Fadel, M. & Chedid, R. & Zeinati, M. & Hmaidan, W., 2003. "Mitigating energy-related GHG emissions through renewable energy," Renewable Energy, Elsevier, vol. 28(8), pages 1257-1276.
    3. Ghanadan, Rebecca & Koomey, Jonathan G., 2005. "Using energy scenarios to explore alternative energy pathways in California," Energy Policy, Elsevier, vol. 33(9), pages 1117-1142, June.
    4. Mondal, Md. Alam Hossain & Boie, Wulf & Denich, Manfred, 2010. "Future demand scenarios of Bangladesh power sector," Energy Policy, Elsevier, vol. 38(11), pages 7416-7426, November.
    5. Mustonen, S.M., 2010. "Rural energy survey and scenario analysis of village energy consumption: A case study in Lao People's Democratic Republic," Energy Policy, Elsevier, vol. 38(2), pages 1040-1048, February.
    6. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    7. Lee, Sin Cherng & Sum Ng, Denny Kok & Yee Foo, Dominic Chwan & Tan, Raymond R., 2009. "Extended pinch targeting techniques for carbon-constrained energy sector planning," Applied Energy, Elsevier, vol. 86(1), pages 60-67, January.
    8. Bose, Ranjan Kumar, 1998. "Automotive energy use and emissions control: a simulation model to analyse transport strategies for Indian metropolises," Energy Policy, Elsevier, vol. 26(13), pages 1001-1016, November.
    9. Mulugetta, Yacob & Mantajit, Nathinee & Jackson, Tim, 2007. "Power sector scenarios for Thailand: An exploratory analysis 2002-2022," Energy Policy, Elsevier, vol. 35(6), pages 3256-3269, June.
    10. Wang, Yanjia & Gu, Alun & Zhang, Aling, 2011. "Recent development of energy supply and demand in China, and energy sector prospects through 2030," Energy Policy, Elsevier, vol. 39(11), pages 6745-6759.
    11. Lee, Seungmoon & Park, Jin-Won & Song, Ho-Jun & Maken, Sanjeev & Filburn, Tom, 2008. "Implication of CO2 capture technologies options in electricity generation in Korea," Energy Policy, Elsevier, vol. 36(1), pages 326-334, January.
    12. Zhang, Qingyu & Tian, Weili & Zheng, Yingyue & Zhang, Lili, 2010. "Fuel consumption from vehicles of China until 2030 in energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6860-6867, November.
    13. Giatrakos, Georgios P. & Tsoutsos, Theocharis D. & Zografakis, Nikos, 2009. "Sustainable power planning for the island of Crete," Energy Policy, Elsevier, vol. 37(4), pages 1222-1238, April.
    14. Huang, Wei Ming & Lee, Grace W.M., 2009. "GHG legislation: Lessons from Taiwan," Energy Policy, Elsevier, vol. 37(7), pages 2696-2707, July.
    15. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    16. Flores, Wilfredo C. & Ojeda, Osvaldo A. & Flores, Marco A. & Rivas, Francisco R., 2011. "Sustainable energy policy in Honduras: Diagnosis and challenges," Energy Policy, Elsevier, vol. 39(2), pages 551-562, February.
    17. He, Ling-Yun & Chen, Yu, 2013. "Thou shalt drive electric and hybrid vehicles: Scenario analysis on energy saving and emission mitigation for road transportation sector in China," Transport Policy, Elsevier, vol. 25(C), pages 30-40.
    18. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
    19. Lin, Jianyi & Cao, Bin & Cui, Shenghui & Wang, Wei & Bai, Xuemei, 2010. "Evaluating the effectiveness of urban energy conservation and GHG mitigation measures: The case of Xiamen city, China," Energy Policy, Elsevier, vol. 38(9), pages 5123-5132, September.
    20. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    21. Wang, Guihua & Bai, Song & Ogden, Joan M., 2009. "Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data," Institute of Transportation Studies, Working Paper Series qt2700q8x1, Institute of Transportation Studies, UC Davis.
    22. von Hippel, David & Suzuki, Tatsujiro & Williams, James H. & Savage, Timothy & Hayes, Peter, 2011. "Energy security and sustainability in Northeast Asia," Energy Policy, Elsevier, vol. 39(11), pages 6719-6730.
    23. Papagiannis, G. & Dagoumas, A. & Lettas, N. & Dokopoulos, P., 2008. "Economic and environmental impacts from the implementation of an intelligent demand side management system at the European level," Energy Policy, Elsevier, vol. 36(1), pages 163-180, January.
    24. El-Fadel, M. & Zeinati, M. & Ghaddar, N. & Mezher, T., 2001. "Uncertainty in estimating and mitigating industrial related GHG emissions," Energy Policy, Elsevier, vol. 29(12), pages 1031-1043, October.
    25. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    26. Takase, Kae & Suzuki, Tatsujiro, 2011. "The Japanese energy sector: Current situation, and future paths," Energy Policy, Elsevier, vol. 39(11), pages 6731-6744.
    27. Huang, Yophy & Bor, Yunchang Jeffrey & Peng, Chieh-Yu, 2011. "The long-term forecast of Taiwan’s energy supply and demand: LEAP model application," Energy Policy, Elsevier, vol. 39(11), pages 6790-6803.
    28. Kalashnikov, Victor & Gulidov, Ruslan & Ognev, Alexander, 2011. "Energy sector of the Russian Far East: Current status and scenarios for the future," Energy Policy, Elsevier, vol. 39(11), pages 6760-6780.
    29. Davoudpour, Hamid & Ahadi, Mohammad Sadegh, 2006. "The potential for greenhouse gases mitigation in household sector of Iran: cases of price reform/efficiency improvement and scenario for 2000-2010," Energy Policy, Elsevier, vol. 34(1), pages 40-49, January.
    30. Michaelis, Laurie & Davidson, Ogunlade, 1996. "GHG mitigation in the transport sector," Energy Policy, Elsevier, vol. 24(10-11), pages 969-984.
    31. Phdungsilp, Aumnad, 2010. "Integrated energy and carbon modeling with a decision support system: Policy scenarios for low-carbon city development in Bangkok," Energy Policy, Elsevier, vol. 38(9), pages 4808-4817, September.
    32. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    33. Dhakal, Shobhakar, 2003. "Implications of transportation policies on energy and environment in Kathmandu Valley, Nepal," Energy Policy, Elsevier, vol. 31(14), pages 1493-1507, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rith, Monorom & Fillone, Alexis & Biona, Jose Bienvenido M., 2019. "The impact of socioeconomic characteristics and land use patterns on household vehicle ownership and energy consumption in an urban area with insufficient public transport service – A case study of me," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    2. M. AlSabbagh & Y. L. Siu & A. Guehnemann & J. Barrett, 2017. "Mitigation of CO2 emissions from the road passenger transport sector in Bahrain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 99-119, January.
    3. Hu, Guangxiao & Ma, Xiaoming & Ji, Junping, 2019. "Scenarios and policies for sustainable urban energy development based on LEAP model – A case study of a postindustrial city: Shenzhen China," Applied Energy, Elsevier, vol. 238(C), pages 876-886.
    4. Vera, Sonia & Sauma, Enzo, 2015. "Does a carbon tax make sense in countries with still a high potential for energy efficiency? Comparison between the reducing-emissions effects of carbon tax and energy efficiency measures in the Chile," Energy, Elsevier, vol. 88(C), pages 478-488.
    5. Dioha, Michael O. & Kumar, Atul, 2020. "Sustainable energy pathways for land transport in Nigeria," Utilities Policy, Elsevier, vol. 64(C).
    6. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2019. "Application of a Adaptive Neuro-Fuzzy Technique for Projection of the Greenhouse Gas Emissions from Road Transportation," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    7. Deendarlianto, & Widyaparaga, Adhika & Sopha, Bertha Maya & Budiman, Arief & Muthohar, Imam & Setiawan, Indra Chandra & Lindasista, Alia & Soemardjito, Joewono & Oka, Kazutaka, 2017. "Scenarios analysis of energy mix for road transportation sector in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 13-23.
    8. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    9. Martínez-Jaramillo, Juan Esteban & Arango-Aramburo, Santiago & Álvarez-Uribe, Karla C. & Jaramillo-Álvarez, Patricia, 2017. "Assessing the impacts of transport policies through energy system simulation: The case of the Medellin Metropolitan Area, Colombia," Energy Policy, Elsevier, vol. 101(C), pages 101-108.
    10. Li, Fangyi & Cai, Bofeng & Ye, Zhaoyang & Wang, Zheng & Zhang, Wei & Zhou, Pan & Chen, Jian, 2019. "Changing patterns and determinants of transportation carbon emissions in Chinese cities," Energy, Elsevier, vol. 174(C), pages 562-575.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    2. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
    3. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
    4. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    5. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    6. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
    7. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    8. Chuan Tian & Guohui Feng & Shuai Li & Fuqiang Xu, 2019. "Scenario Analysis on Energy Consumption and CO 2 Emissions Reduction Potential in Building Heating Sector at Community Level," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    9. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
    10. Dagher, Leila & Ruble, Isabella, 2011. "Modeling Lebanon’s electricity sector: Alternative scenarios and their implications," Energy, Elsevier, vol. 36(7), pages 4315-4326.
    11. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    12. El Fadel, M. & Rachid, G. & El-Samra, R. & Bou Boutros, G. & Hashisho, J., 2013. "Emissions reduction and economic implications of renewable energy market penetration of power generation for residential consumption in the MENA region," Energy Policy, Elsevier, vol. 52(C), pages 618-627.
    13. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    14. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    15. Kale, Rajesh V. & Pohekar, Sanjay D., 2014. "Electricity demand and supply scenarios for Maharashtra (India) for 2030: An application of long range energy alternatives planning," Energy Policy, Elsevier, vol. 72(C), pages 1-13.
    16. Lixiao Zhang & Yueyi Feng & Bin Chen, 2011. "Alternative Scenarios for the Development of a Low-Carbon City: A Case Study of Beijing, China," Energies, MDPI, vol. 4(12), pages 1-16, December.
    17. Qunli Wu & Chenyang Peng, 2016. "Scenario Analysis of Carbon Emissions of China’s Electric Power Industry Up to 2030," Energies, MDPI, vol. 9(12), pages 1-18, November.
    18. Hong, Jong Ho & Kim, Jitae & Son, Wonik & Shin, Heeyoung & Kim, Nahyun & Lee, Woong Ki & Kim, Jintae, 2019. "Long-term energy strategy scenarios for South Korea: Transition to a sustainable energy system," Energy Policy, Elsevier, vol. 127(C), pages 425-437.
    19. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    20. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:66:y:2014:i:c:p:615-629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.