IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp795-807.html
   My bibliography  Save this article

Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector

Author

Listed:
  • Subramanyam, Veena
  • Kumar, Amit
  • Talaei, Alireza
  • Mondal, Md. Alam Hossain

Abstract

Despite improvements, the residential sector is one of most energy-intensive sectors in the world and is the third largest consumer of energy across Canada, and in Alberta in particular. This study investigates opportunities to improve energy efficiency and reduce greenhouse gas emissions (GHG) in the residential sector. A case study for Alberta is conducted. Energy modeling and scenario analyses are used to project future energy savings and greenhouse gas mitigation potential in the residential sector. Seventeen energy-saving options are identified in different residential subsectors, including space heating and cooling, water heating, appliances, and lighting. The long-term impacts (i.e., from 2013 to 2050) of these technologies in terms of energy savings and greenhouse gas mitigation potential are assessed using the Long-range Energy Alternative Planning model. For the evaluated options, more than 80% of GHG mitigation is achievable with negative GHG abatement cost. A GHG abatement cost curve is developed to assess the economic performance of various options. The results of the cost curve indicate that efficient lighting, efficient furnaces, and high efficiency appliances are the three areas in which the most GHG mitigation can be achieved at the lowest cost. The results provide invaluable insights to policy makers.

Suggested Citation

  • Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:795-807
    DOI: 10.1016/j.energy.2016.10.115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216315614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.10.115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ackerman, Frank & Stanton, Elizabeth A. & Bueno, Ramón, 2013. "CRED: A new model of climate and development," Ecological Economics, Elsevier, vol. 85(C), pages 166-176.
    2. Kadian, Rashmi & Dahiya, R.P. & Garg, H.P., 2007. "Energy-related emissions and mitigation opportunities from the household sector in Delhi," Energy Policy, Elsevier, vol. 35(12), pages 6195-6211, December.
    3. Sathaye, Jayant A. & Dixon, Robert K. & Rosenzweig, Cynthia, 1997. "Climate change country studies," Applied Energy, Elsevier, vol. 56(3-4), pages 225-235, March.
    4. Shimoda, Yoshiyuki & Yamaguchi, Yukio & Okamura, Tomo & Taniguchi, Ayako & Yamaguchi, Yohei, 2010. "Prediction of greenhouse gas reduction potential in Japanese residential sector by residential energy end-use model," Applied Energy, Elsevier, vol. 87(6), pages 1944-1952, June.
    5. Criqui, Patrick & Mima, Silvana & Viguier, Laurent, 1999. "Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings: an assessment using the POLES model," Energy Policy, Elsevier, vol. 27(10), pages 585-601, October.
    6. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Corrigendum to "Modelling energy systems for developing countries": [Energy Policy 35 (2007) 3473-3482]," Energy Policy, Elsevier, vol. 35(9), pages 4764-4765, September.
    7. Mondal, Md. Alam Hossain & Boie, Wulf & Denich, Manfred, 2010. "Future demand scenarios of Bangladesh power sector," Energy Policy, Elsevier, vol. 38(11), pages 7416-7426, November.
    8. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
    9. Mark Jaccard & Alison Bailie & John Nyboer, 1996. "CO2 Emission Reduction Costs in the Residential Sector: Behavioral Parameters in a Bottom-Up Simulation Model," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 107-134.
    10. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    11. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    12. Shin, Ho-Chul & Park, Jin-Won & Kim, Ho-Seok & Shin, Eui-Soon, 2005. "Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model," Energy Policy, Elsevier, vol. 33(10), pages 1261-1270, July.
    13. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    14. Kumar, Amit & Bhattacharya, S.C & Pham, H.L, 2003. "Greenhouse gas mitigation potential of biomass energy technologies in Vietnam using the long range energy alternative planning system model," Energy, Elsevier, vol. 28(7), pages 627-654.
    15. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    16. Shimoda, Yoshiyuki & Okamura, Tomo & Yamaguchi, Yohei & Yamaguchi, Yukio & Taniguchi, Ayako & Morikawa, Takao, 2010. "City-level energy and CO2 reduction effect by introducing new residential water heaters," Energy, Elsevier, vol. 35(12), pages 4880-4891.
    17. Hamamoto, Mitsutsugu, 2013. "Energy-saving behavior and marginal abatement cost for household CO2 emissions," Energy Policy, Elsevier, vol. 63(C), pages 809-813.
    18. Sadineni, Suresh B. & Madala, Srikanth & Boehm, Robert F., 2011. "Passive building energy savings: A review of building envelope components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3617-3631.
    19. Zhang, ZhongXiang & Folmer, Henk, 1998. "Economic modelling approaches to cost estimates for the control of carbon dioxide emissions1," Energy Economics, Elsevier, vol. 20(1), pages 101-120, February.
    20. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    21. Xiao, He & Wei, Qingpeng & Wang, Hailin, 2014. "Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China׳s building sector to 2030," Energy Policy, Elsevier, vol. 69(C), pages 92-105.
    22. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    23. Urge-Vorsatz, Diana & Novikova, Aleksandra, 2008. "Potentials and costs of carbon dioxide mitigation in the world's buildings," Energy Policy, Elsevier, vol. 36(2), pages 642-661, February.
    24. Simões, Sofia & Cleto, João & Fortes, Patri­cia & Seixas, Júlia & Huppes, Gjalt, 2008. "Cost of energy and environmental policy in Portuguese CO2 abatement--scenario analysis to 2020," Energy Policy, Elsevier, vol. 36(9), pages 3598-3611, September.
    25. Shabbir, Rabia & Ahmad, Sheikh Saeed, 2010. "Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model," Energy, Elsevier, vol. 35(5), pages 2323-2332.
    26. Meyers, S & McMahon, J.E & McNeil, M & Liu, X, 2003. "Impacts of US federal energy efficiency standards for residential appliances," Energy, Elsevier, vol. 28(8), pages 755-767.
    27. Huang, Yophy & Bor, Yunchang Jeffrey & Peng, Chieh-Yu, 2011. "The long-term forecast of Taiwan’s energy supply and demand: LEAP model application," Energy Policy, Elsevier, vol. 39(11), pages 6790-6803.
    28. Ueno, Tsuyoshi & Sano, Fuminori & Saeki, Osamu & Tsuji, Kiichiro, 2006. "Effectiveness of an energy-consumption information system on energy savings in residential houses based on monitored data," Applied Energy, Elsevier, vol. 83(2), pages 166-183, February.
    29. Kang Yanbing & Wei Qingpeng, 2005. "Analysis of the impacts of building energy efficiency policies and technical improvements on China's future energy demand," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 24(3/4), pages 280-299.
    30. Davoudpour, Hamid & Ahadi, Mohammad Sadegh, 2006. "The potential for greenhouse gases mitigation in household sector of Iran: cases of price reform/efficiency improvement and scenario for 2000-2010," Energy Policy, Elsevier, vol. 34(1), pages 40-49, January.
    31. Van Raaij, W. Fred & Verhallen, Theo M. M., 1983. "A behavioral model of residential energy use," Journal of Economic Psychology, Elsevier, vol. 3(1), pages 39-63.
    32. Bardhan, Ashok & Jaffee, Dwight & Kroll, Cynthia & Wallace, Nancy, 2014. "Energy efficiency retrofits for U.S. housing: Removing the bottlenecks," Regional Science and Urban Economics, Elsevier, vol. 47(C), pages 45-60.
    33. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
    34. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    35. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    2. Agrawal, Nikhil & Ahiduzzaman, Md & Kumar, Amit, 2018. "The development of an integrated model for the assessment of water and GHG footprints for the power generation sector," Applied Energy, Elsevier, vol. 216(C), pages 558-575.
    3. Talaei, Alireza & Oni, Abayomi Olufemi & Ahiduzzaman, Mohammed & Roychaudhuri, Pritam Sankar & Rutherford, Jeff & Kumar, Amit, 2020. "Assessment of the impacts of process-level energy efficiency improvement on greenhouse gas mitigation potential in the petroleum refining sector," Energy, Elsevier, vol. 191(C).
    4. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    5. Yuan Kong & Chao Feng & Liyang Guo, 2022. "Peaking Global and G20 Countries’ CO 2 Emissions under the Shared Socio-Economic Pathways," IJERPH, MDPI, vol. 19(17), pages 1-19, September.
    6. Xiaran Zhang & Xiaoxia Rong & Meng Cai & Qingchun Meng, 2019. "Collaborative Optimization of Emissions and Abatement Costs for Air Pollutants and Greenhouse Gases from the Perspective of Energy Structure: An Empirical Analysis in Tianjin," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    7. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
    8. Chiatti, Chiara & Fabiani, Claudia & Cotana, Franco & Pisello, Anna Laura, 2021. "Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials’ optimization," Energy, Elsevier, vol. 231(C).
    9. Syed Aziz Ur Rehman & Yanpeng Cai & Zafar Ali Siyal & Nayyar Hussain Mirjat & Rizwan Fazal & Saif Ur Rehman Kashif, 2019. "Cleaner and Sustainable Energy Production in Pakistan: Lessons Learnt from the Pak-TIMES Model," Energies, MDPI, vol. 13(1), pages 1-21, December.
    10. Ur Rehman, Syed Aziz & Cai, Yanpeng & Mirjat, Nayyar Hussain & Walasai, Gordhan Das & Nafees, Mohammad, 2019. "Energy-environment-economy nexus in Pakistan: Lessons from a PAK-TIMES model," Energy Policy, Elsevier, vol. 126(C), pages 200-211.
    11. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    2. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    3. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    4. Mondal, Md Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Mekonnen, Dawit & Rosegrant, Mark, 2018. "Ethiopian energy status and demand scenarios: Prospects to improve energy efficiency and mitigate GHG emissions," Energy, Elsevier, vol. 149(C), pages 161-172.
    5. Halkos, George & Tzeremes, Panagiotis, 2015. "Assessing greenhouse gas emissions in Estonia's energy system," MPRA Paper 66105, University Library of Munich, Germany.
    6. Vicente Sebastian Espinoza & Veronica Guayanlema & Javier Mart nez-G mez, 2018. "Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 52-54.
    7. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    8. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    9. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    10. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
    11. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    12. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    13. El-Sayed, Ahmed Hassan A. & Khalil, Adel & Yehia, Mohamed, 2023. "Modeling alternative scenarios for Egypt 2050 energy mix based on LEAP analysis," Energy, Elsevier, vol. 266(C).
    14. Liu, Lei & Wang, Ke & Wang, Shanshan & Zhang, Ruiqin & Tang, Xiaoyan, 2018. "Assessing energy consumption, CO2 and pollutant emissions and health benefits from China's transport sector through 2050," Energy Policy, Elsevier, vol. 116(C), pages 382-396.
    15. Park, Nyun-Bae & Yun, Sun-Jin & Jeon, Eui-Chan, 2013. "An analysis of long-term scenarios for the transition to renewable energy in the Korean electricity sector," Energy Policy, Elsevier, vol. 52(C), pages 288-296.
    16. Emodi, Nnaemeka Vincent & Emodi, Chinenye Comfort & Murthy, Girish Panchakshara & Emodi, Adaeze Saratu Augusta, 2017. "Energy policy for low carbon development in Nigeria: A LEAP model application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 247-261.
    17. Islas, Jorge & Manzini, Fabio & Masera, Omar, 2007. "A prospective study of bioenergy use in Mexico," Energy, Elsevier, vol. 32(12), pages 2306-2320.
    18. McPherson, Madeleine & Karney, Bryan, 2014. "Long-term scenario alternatives and their implications: LEAP model application of Panama׳s electricity sector," Energy Policy, Elsevier, vol. 68(C), pages 146-157.
    19. Khan, Muhammad Arshad, 2015. "Modelling and forecasting the demand for natural gas in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1145-1159.
    20. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:795-807. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.