IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p108-d301631.html
   My bibliography  Save this article

Cleaner and Sustainable Energy Production in Pakistan: Lessons Learnt from the Pak-TIMES Model

Author

Listed:
  • Syed Aziz Ur Rehman

    (Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan)

  • Yanpeng Cai

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Zafar Ali Siyal

    (Department of Energy and Environment Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah 67480, Sindh, Pakistan)

  • Nayyar Hussain Mirjat

    (Department of Electrical Engineering, Mehran University of Engineering and Technology, Jamshoro 76062, Sindh, Pakistan)

  • Rizwan Fazal

    (Pakistan Institute of Development Economics (PIDE), Quaid-e-Azam University Campus, Islamabad 44000, Pakistan)

  • Saif Ur Rehman Kashif

    (Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Punjab, Pakistan)

Abstract

The energy planning process essentially requires addressing diverse planning objectives, including prioritizing resources, and the estimation of environmental emissions and associated health risks. This study investigates the impacts of atmospheric pollution for Pakistan from the energy production processes under various modalities. A national-scale bottom-up energy optimization model (Pak-TIMES) with the ANSWER-TIMES framework is developed to assess the electricity generation pathways (2015–2035) and estimate GHG emissions and major air pollutants, i.e., CH 4 , CO, CO 2 , N 2 O, NO X , PM 1 , PM 10 , PM 2.5 , PM BC , PM OC , PM TSP , SO 2 , and VOC under five scenarios. These scenarios are: BAU (business-as-usual), RE-30 (30% renewables), RE-40 (40% renewables), Coal-30 (30% coal), and Coal-40 (40% coal). It is revealed that to reach the electricity demand of 3091 PJ in 2035, both the Coal-30 and Coal-40 scenarios shall cause maximum emissions of GHGs, i.e., 260.13 and 338.92 Mt (million tons) alongside 40.52 and 54.03 Mt emissions of PM TSP in both of the scenarios, respectively. BAU scenario emissions are estimated to be 181.5 Mt (GHGs) and 24.30 Mt (PM TSP ). Minimum emissions are estimated in the RE-40 scenario with 96.01 Mt of GHGs and 11.80 Mt of PM TSP , followed by the RE-30 scenario (143.20 GHGs and 17.73 Mt PM TSP ). It is, therefore, concluded that coal-based electricity generation technologies would be a major source of emission and would contribute the highest amount of air pollution. This situation necessitates harnessing renewables in the future, which will significantly mitigate public health risks from atmospheric pollution.

Suggested Citation

  • Syed Aziz Ur Rehman & Yanpeng Cai & Zafar Ali Siyal & Nayyar Hussain Mirjat & Rizwan Fazal & Saif Ur Rehman Kashif, 2019. "Cleaner and Sustainable Energy Production in Pakistan: Lessons Learnt from the Pak-TIMES Model," Energies, MDPI, vol. 13(1), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:108-:d:301631
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wright, Evelyn L. & Belt, Juan A.B. & Chambers, Adam & Delaquil, Pat & Goldstein, Gary, 2010. "A scenario analysis of investment options for the Cuban power sector using the MARKAL model," Energy Policy, Elsevier, vol. 38(7), pages 3342-3355, July.
    2. Uddin, Waqar & Khan, B. & Shaukat, Neelofar & Majid, Muhammad & Mujtaba, G. & Mehmood, Arshad & Ali, S.M. & Younas, U. & Anwar, Muhammad & Almeshal, Abdullah M., 2016. "Biogas potential for electric power generation in Pakistan: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 25-33.
    3. Perwez, Usama & Sohail, Ahmed & Hassan, Syed Fahad & Zia, Usman, 2015. "The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning," Energy, Elsevier, vol. 93(P2), pages 2423-2435.
    4. Syed Aziz Ur Rehman & Yanpeng Cai & Nayyar Hussain Mirjat & Gordhan Das Walasai & Izaz Ali Shah & Sharafat Ali, 2017. "The Future of Sustainable Energy Production in Pakistan: A System Dynamics-Based Approach for Estimating Hubbert Peaks," Energies, MDPI, vol. 10(11), pages 1-24, November.
    5. Mondal, Md. Alam Hossain & Bryan, Elizabeth & Ringler, Claudia & Rosegrant, Mark, 2017. "Ethiopian power sector development: Renewable based universal electricity access and export strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 11-20.
    6. Abas, N. & Kalair, A. & Khan, N. & Kalair, A.R., 2017. "Review of GHG emissions in Pakistan compared to SAARC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 990-1016.
    7. Aslam, Waleed & Soban, Muhammad & Akhtar, Farwa & Zaffar, Nauman A., 2015. "Smart meters for industrial energy conservation and efficiency optimization in Pakistan: Scope, technology and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 933-943.
    8. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    9. Yousuf, I. & Ghumman, A.R. & Hashmi, H.N. & Kamal, M.A., 2014. "Carbon emissions from power sector in Pakistan and opportunities to mitigate those," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 71-77.
    10. Shami, Sajjad Haider & Ahmad, Jameel & Zafar, Raheel & Haris, Muhammad & Bashir, Sajid, 2016. "Evaluating wind energy potential in Pakistan's three provinces, with proposal for integration into national power grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 408-421.
    11. Anwar, Javed, 2016. "Analysis of energy security, environmental emission and fuel import costs under energy import reduction targets: A case of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1065-1078.
    12. Al-Riffai, Perrihan & Breisinger, Clemens & Mondal, Md. Hossain Alam & Ringler, Claudia & Wiebelt, Manfred & Zhu, Tingju, 2017. "Linking the economics of water, energy, and food: A nexus modeling approach," MENA working papers 4, International Food Policy Research Institute (IFPRI).
    13. Alam Hossain Mondal, Md. & Mathur, Jyotirmay & Denich, Manfred, 2011. "Impacts of CO2 emission constraints on technology selection and energy resources for power generation in Bangladesh," Energy Policy, Elsevier, vol. 39(4), pages 2043-2050, April.
    14. Nayyar, Zeeshan Alam & Zaigham, Nayyer Alam & Qadeer, Abdul, 2014. "Assessment of present conventional and non-conventional energy scenario of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 543-553.
    15. Subramanyam, Veena & Kumar, Amit & Talaei, Alireza & Mondal, Md. Alam Hossain, 2017. "Energy efficiency improvement opportunities and associated greenhouse gas abatement costs for the residential sector," Energy, Elsevier, vol. 118(C), pages 795-807.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iftikhar A. Shahid & Kafait Ullah & Atif Naveed Khan & Muhammad Imran Ahmed & Muhammad Dawood & Clark A. Miller & Zafar A. Khan, 2021. "Nexus between Household Energy and Poverty in Poorly Documented Developing Economies—Perspectives from Pakistan," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    2. Fazal, Rizwan & Rehman, Syed Aziz Ur & Bhatti, M. Ishaq, 2022. "Graph theoretic approach to expose the energy-induced crisis in Pakistan," Energy Policy, Elsevier, vol. 169(C).
    3. Sajid Abrar & Hooman Farzaneh, 2021. "Scenario Analysis of the Low Emission Energy System in Pakistan Using Integrated Energy Demand-Supply Modeling Approach," Energies, MDPI, vol. 14(11), pages 1-30, June.
    4. Rizwan Fazal & Syed Aziz Ur Rehman & Muhammad Ishaq Bhatti & Atiq Ur Rehman & Fariha Arooj & Umar Hayat, 2021. "A Cross-Sectoral Investigation of the Energy–Environment–Economy Causal Nexus in Pakistan: Policy Suggestions for Improved Energy Management," Energies, MDPI, vol. 14(17), pages 1-22, September.
    5. Safder, Usman & Hai, Tra Nguyen & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Nationwide policymaking strategies to prevent future electricity crises in developing countries using data-driven forecasting and fuzzy-SWOT analyses," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ur Rehman, Syed Aziz & Cai, Yanpeng & Mirjat, Nayyar Hussain & Walasai, Gordhan Das & Nafees, Mohammad, 2019. "Energy-environment-economy nexus in Pakistan: Lessons from a PAK-TIMES model," Energy Policy, Elsevier, vol. 126(C), pages 200-211.
    2. Fazal, Rizwan & Rehman, Syed Aziz Ur & Bhatti, M. Ishaq, 2022. "Graph theoretic approach to expose the energy-induced crisis in Pakistan," Energy Policy, Elsevier, vol. 169(C).
    3. Abdullah, Fahad Bin & Iqbal, Rizwan & Hyder, Syed Irfan & Jawaid, Mohammad, 2020. "Energy security indicators for Pakistan: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Malik, Sadia & Qasim, Maha & Saeed, Hasan & Chang, Youngho & Taghizadeh-Hesary, Farhad, 2020. "Energy security in Pakistan: Perspectives and policy implications from a quantitative analysis," Energy Policy, Elsevier, vol. 144(C).
    5. Muhammad U. Khan & Muhammad Ahmad & Muhammad Sultan & Ihsanullah Sohoo & Prakash C. Ghimire & Azlan Zahid & Abid Sarwar & Muhammad Farooq & Uzair Sajjad & Peyman Abdeshahian & Maryam Yousaf, 2021. "Biogas Production Potential from Livestock Manure in Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    6. Sajid Abrar & Hooman Farzaneh, 2021. "Scenario Analysis of the Low Emission Energy System in Pakistan Using Integrated Energy Demand-Supply Modeling Approach," Energies, MDPI, vol. 14(11), pages 1-30, June.
    7. Khatri, Krishan Lal & Muhammad, Amir Raza & Soomro, Shakir Ali & Tunio, Nadeem Ahmed & Ali, Muhammad Mubarak, 2021. "Investigation of possible solid waste power potential for distributed generation development to overcome the power crises of Karachi city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    8. Rafique, M. Mujahid & Rehman, S., 2017. "National energy scenario of Pakistan – Current status, future alternatives, and institutional infrastructure: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 156-167.
    9. Raza, Muhammad Amir & Khatri, Krishan Lal & Hussain, Arslan, 2022. "Transition from fossilized to defossilized energy system in Pakistan," Renewable Energy, Elsevier, vol. 190(C), pages 19-29.
    10. Mondal, Md. Alam Hossain & Ringler, Claudia & Al-Riffai, Perrihan & Eldidi, Hagar & Breisinger, Clemens & Wiebelt, Manfred, 2019. "Long-term optimization of Egypt’s power sector: Policy implications," Energy, Elsevier, vol. 166(C), pages 1063-1073.
    11. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    12. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    13. Sana Bashir & Iftikhar Ahmad & Sajid Rashid Ahmad, 2018. "Low-Emission Modeling for Energy Demand in the Household Sector: A Study of Pakistan as a Developing Economy," Sustainability, MDPI, vol. 10(11), pages 1-17, October.
    14. Aized, Tauseef & Shahid, Muhammad & Bhatti, Amanat Ali & Saleem, Muhammad & Anandarajah, Gabrial, 2018. "Energy security and renewable energy policy analysis of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 155-169.
    15. Ashfaq, Asad & Ianakiev, Anton, 2018. "Features of fully integrated renewable energy atlas for Pakistan; wind, solar and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 14-27.
    16. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    17. Yasmin, Nazia & Grundmann, Philipp, 2020. "Home-cooked energy transitions: Women empowerment and biogas-based cooking technology in Pakistan," Energy Policy, Elsevier, vol. 137(C).
    18. Qazi, Usama & Jahanzaib, Mirza & Ahmad, Wasim & Hussain, Salman, 2017. "An institutional framework for the development of sustainable and competitive power market in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 83-95.
    19. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    20. Khan, Ali Nawaz & En, Xie & Raza, Muhammad Yousaf & Khan, Naseer Abbas & Ali, Ahsan, 2020. "Sectorial study of technological progress and CO2 emission: Insights from a developing economy," Technological Forecasting and Social Change, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:108-:d:301631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.