IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v79y2019ic1.html
   My bibliography  Save this article

The impact of socioeconomic characteristics and land use patterns on household vehicle ownership and energy consumption in an urban area with insufficient public transport service – A case study of metro Manila

Author

Listed:
  • Rith, Monorom
  • Fillone, Alexis
  • Biona, Jose Bienvenido M.

Abstract

Understanding the impact of household characteristics and land use attributes on household vehicle ownership and usage decision is an efficient way of crafting strategic approaches having negative impacts on private vehicle dependency toward a sustainable urban transportation system. This empirical study applied the Gaussian copula-based discrete-continuous choice model to develop an integrated household vehicle ownership and energy consumption model using the unique data sample of 1795 households gathered in 2017 through various areas in Metro Manila, Philippines. The findings necessarily reported that household income is the main factor of household vehicle ownership and energy consumption decision. Households with the presence of older and well-educated household heads are found to be willing to acquire more vehicles. Encouraging urban densification, improvement of road public transport line density, reduction of distance from a residential area to the shortest railway station, and increasing mixture of integral facilities in neighborhoods (i.e., hospitals, markets, schools, and recreation centers) have considerable contributions to build a metropolis with less private vehicle dependency. The developed model was then applied to simulate percentage changes of the vehicle fleet and energy consumption based on various scenarios, and the policy implications based on the empirical findings were also discussed to help policymakers.

Suggested Citation

  • Rith, Monorom & Fillone, Alexis & Biona, Jose Bienvenido M., 2019. "The impact of socioeconomic characteristics and land use patterns on household vehicle ownership and energy consumption in an urban area with insufficient public transport service – A case study of me," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
  • Handle: RePEc:eee:jotrge:v:79:y:2019:i:c:1
    DOI: 10.1016/j.jtrangeo.2019.102484
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692319301127
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2019.102484?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bansal, Prateek & Kockelman, Kara M. & Schievelbein, Will & Schauer-West, Scott, 2018. "Indian vehicle ownership and travel behavior: A case study of Bengaluru, Delhi and Kolkata," Research in Transportation Economics, Elsevier, vol. 71(C), pages 2-8.
    2. Liu, Yangwen & Tremblay, Jean-Michel & Cirillo, Cinzia, 2014. "An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 315-328.
    3. Fang, Hao Audrey, 2008. "A discrete-continuous model of households' vehicle choice and usage, with an application to the effects of residential density," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 736-758, November.
    4. Ding, Chuan & Cao, Xinyu, 2019. "How does the built environment at residential and work locations affect car ownership? An application of cross-classified multilevel model," Journal of Transport Geography, Elsevier, vol. 75(C), pages 37-45.
    5. Brownstone, David & Fang, Hao (Audrey), 2014. "A vehicle ownership and utilization choice model with endogenous residential density," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 135-151.
    6. Robin Hickman & Neil Lopez & Mengqiu Cao & Beatriz Mella Lira & Jose Bienvenido Manuel Biona, 2018. "“I Drive outside of Peak Time to Avoid Traffic Jams—Public Transport Is Not Attractive Here.” Challenging Discourses on Travel to the University Campus in Manila," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    7. Soltani, Ali, 2017. "Social and urban form determinants of vehicle ownership; evidence from a developing country," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 90-100.
    8. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    9. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    10. Ye Feng & Don Fullerton & Li Gan, 2013. "Vehicle choices, miles driven, and pollution policies," Journal of Regulatory Economics, Springer, vol. 44(1), pages 4-29, August.
    11. Ahanchian, Mohammad & Biona, Jose Bienvenido Manuel, 2014. "Energy demand, emissions forecasts and mitigation strategies modeled over a medium-range horizon: The case of the land transportation sector in Metro Manila," Energy Policy, Elsevier, vol. 66(C), pages 615-629.
    12. Cinzia Cirillo & Yangwen Liu & Jean-Michel Tremblay, 2017. "Simulation, numerical approximation and closed forms for joint discrete continuous models with an application to household vehicle ownership and use," Transportation, Springer, vol. 44(5), pages 1105-1125, September.
    13. Choudhary, Ravi & Vasudevan, Vinod, 2017. "Study of vehicle ownership for urban and rural households in India," Journal of Transport Geography, Elsevier, vol. 58(C), pages 52-58.
    14. Erika Spissu & Abdul Pinjari & Ram Pendyala & Chandra Bhat, 2009. "A copula-based joint multinomial discrete–continuous model of vehicle type choice and miles of travel," Transportation, Springer, vol. 36(4), pages 403-422, July.
    15. West, Sarah E., 2004. "Distributional effects of alternative vehicle pollution control policies," Journal of Public Economics, Elsevier, vol. 88(3-4), pages 735-757, March.
    16. Bhat, Chandra R. & Sen, Sudeshna & Eluru, Naveen, 2009. "The impact of demographics, built environment attributes, vehicle characteristics, and gasoline prices on household vehicle holdings and use," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 1-18, January.
    17. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    18. Karim W. F. Youssef, 2018. "The built environment and public health," Community Development, Taylor & Francis Journals, vol. 49(1), pages 121-122, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Barchański & Renata Żochowska & Marcin Jacek Kłos, 2022. "A Method for the Identification of Critical Interstop Sections in Terms of Introducing Electric Buses in Public Transport," Energies, MDPI, vol. 15(20), pages 1-37, October.
    2. Verma, Pramit & Kumari, Tanu & Raghubanshi, Akhilesh Singh, 2021. "Energy emissions, consumption and impact of urban households: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    3. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    4. Zuzanna Kłos-Adamkiewicz & Elżbieta Szaruga & Agnieszka Gozdek & Magdalena Kogut-Jaworska, 2023. "Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland," Energies, MDPI, vol. 16(9), pages 1-25, April.
    5. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    6. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rith, Monorom & Fillone, Alexis M. & Biona, Jose Bienvenido Manuel M., 2020. "Energy and environmental benefits and policy implications for private passenger vehicles in an emerging metropolis of Southeast Asia – A case study of Metro Manila," Applied Energy, Elsevier, vol. 275(C).
    2. Toshiyuki Yamamoto & Jean-Loup Madre & Matthieu Lapparent & Roger Collet, 2020. "A random heaping model of annual vehicle kilometres travelled considering heterogeneous approximation in reporting," Transportation, Springer, vol. 47(3), pages 1027-1045, June.
    3. Don Fullerton & Li Gan & Miwa Hattori, 2015. "A model to evaluate vehicle emission incentive policies in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 79-108, January.
    4. Cinzia Cirillo & Yangwen Liu & Jean-Michel Tremblay, 2017. "Simulation, numerical approximation and closed forms for joint discrete continuous models with an application to household vehicle ownership and use," Transportation, Springer, vol. 44(5), pages 1105-1125, September.
    5. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    6. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Substitution between cars within the household," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 135-156.
    7. Liu, Yangwen & Tremblay, Jean-Michel & Cirillo, Cinzia, 2014. "An integrated model for discrete and continuous decisions with application to vehicle ownership, type and usage choices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 315-328.
    8. Fang, Hao Audrey, 2008. "A discrete-continuous model of households' vehicle choice and usage, with an application to the effects of residential density," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 736-758, November.
    9. Naveen Eluru & Chandra Bhat & Ram Pendyala & Karthik Konduri, 2010. "A joint flexible econometric model system of household residential location and vehicle fleet composition/usage choices," Transportation, Springer, vol. 37(4), pages 603-626, July.
    10. Lloro, Alicia & Brownstone, David, 2018. "Vehicle choice and utilization: Improving estimation with partially observed choices and hybrid pairs," Journal of choice modelling, Elsevier, vol. 28(C), pages 137-152.
    11. Baltas, George & Saridakis, Charalampos, 2013. "An empirical investigation of the impact of behavioural and psychographic consumer characteristics on car preferences: An integrated model of car type choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 92-110.
    12. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2014. "Alternative Modeling Approaches Used for Examining Automobile Ownership: A Comprehensive Review," Transport Reviews, Taylor & Francis Journals, vol. 34(4), pages 441-473, July.
    13. Hackbarth, André & Madlener, Reinhard, 2018. "Combined Vehicle Type and Fuel Type Choices of Private Households: An Empirical Analysis for Germany," FCN Working Papers 17/2018, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN), revised May 2019.
    14. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    15. Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
    16. Shasha Liu & Toshiyuki Yamamoto & Enjian Yao, 2023. "Joint modeling of mode choice and travel distance with intra-household interactions," Transportation, Springer, vol. 50(5), pages 1527-1552, October.
    17. Antonio M. Bento & Lawrence H. Goulder & Emeric Henry & Mark R. Jacobsen & Roger H. von Haefen, 2005. "Distributional and Efficiency Impacts of Gasoline Taxes: An Econometrically Based Multi-market Study," American Economic Review, American Economic Association, vol. 95(2), pages 282-287, May.
    18. Erika Spissu & Abdul Pinjari & Ram Pendyala & Chandra Bhat, 2009. "A copula-based joint multinomial discrete–continuous model of vehicle type choice and miles of travel," Transportation, Springer, vol. 36(4), pages 403-422, July.
    19. Bhat, Chandra R. & Mondal, Aupal & Asmussen, Katherine E. & Bhat, Aarti C., 2020. "A multiple discrete extreme value choice model with grouped consumption data and unobserved budgets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 196-222.
    20. Kumar Dey, Bibhas & Anowar, Sabreena & Eluru, Naveen, 2021. "A framework for estimating bikeshare origin destination flows using a multiple discrete continuous system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 119-133.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:79:y:2019:i:c:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.