IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v46y2023ics1755534523000015.html
   My bibliography  Save this article

A Bayesian instrumental variable model for multinomial choice with correlated alternatives

Author

Listed:
  • Watanabe, Hajime
  • Maruyama, Takuya

Abstract

Endogeneity and correlated alternatives are major concerns to be addressed in travel behavior analysis. However, these issues have rarely been dealt with simultaneously in advanced discrete choice models. This study proposes a multinomial probit model that incorporates the instrumental variable method, namely, a fully parametric instrumental variable model for a multinomial choice. The proposed model has the following three characteristics: (1) it allows binary and/or continuous endogenous variables; (2) it allows any number of instrumental variables in each alternative; and (3) it allows positive and/or negative correlations between any choice alternatives. For parameter estimation, we also propose a Bayesian Markov chain Monte Carlo algorithm that can be accommodated in more extended model structures. The simulation study demonstrates that the proposed model addresses endogeneity while allowing correlations between the choice alternatives. Meanwhile, the simulation also implies that the users need to pay attention to the setting of the prior distribution when an endogenous variable of interest is binary, even if the sample size is moderate. The proposed model will be a useful tool in disciplines in which both endogeneity and correlations between choice alternatives are major concerns.

Suggested Citation

  • Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
  • Handle: RePEc:eee:eejocm:v:46:y:2023:i:c:s1755534523000015
    DOI: 10.1016/j.jocm.2023.100400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534523000015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2023.100400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokhtarian, Patricia L. & Cao, Xinyu, 2008. "Examining the impacts of residential self-selection on travel behavior: A focus on methodologies," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 204-228, March.
    2. Andrew Chesher & Adam M. Rosen, 2017. "Generalized Instrumental Variable Models," Econometrica, Econometric Society, vol. 85, pages 959-989, May.
    3. Mondal, Aupal & Bhat, Chandra R., 2022. "A spatial rank-ordered probit model with an application to travel mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 374-393.
    4. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    5. Pike, Susan & Lubell, Mark, 2018. "The conditional effects of social influence in transportation mode choice," Research in Transportation Economics, Elsevier, vol. 68(C), pages 2-10.
    6. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    7. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    8. Andrew Chesher, 2010. "Instrumental Variable Models for Discrete Outcomes," Econometrica, Econometric Society, vol. 78(2), pages 575-601, March.
    9. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.
    10. Walker, Joan L. & Ehlers, Emily & Banerjee, Ipsita & Dugundji, Elenna R., 2011. "Correcting for endogeneity in behavioral choice models with social influence variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 362-374, May.
    11. Sangho Choo & Patricia Mokhtarian, 2008. "How do people respond to congestion mitigation policies? A multivariate probit model of the individual consideration of three travel-related strategy bundles," Transportation, Springer, vol. 35(2), pages 145-163, March.
    12. Xu, Min & Meng, Qiang & Liu, Kai & Yamamoto, Toshiyuki, 2017. "Joint charging mode and location choice model for battery electric vehicle users," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 68-86.
    13. Peter E. Rossi & Greg M. Allenby, 2003. "Bayesian Statistics and Marketing," Marketing Science, INFORMS, vol. 22(3), pages 304-328, July.
    14. Brownstone, David & Fang, Hao (Audrey), 2014. "A vehicle ownership and utilization choice model with endogenous residential density," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(2), pages 135-151.
    15. Kevin Arceneaux & David W. Nickerson, 2009. "Who Is Mobilized to Vote? A Re‐Analysis of 11 Field Experiments," American Journal of Political Science, John Wiley & Sons, vol. 53(1), pages 1-16, January.
    16. Fang, Hao Audrey, 2008. "A discrete-continuous model of households' vehicle choice and usage, with an application to the effects of residential density," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 736-758, November.
    17. Gerber, Alan S. & Green, Donald P., 2000. "The Effects of Canvassing, Telephone Calls, and Direct Mail on Voter Turnout: A Field Experiment," American Political Science Review, Cambridge University Press, vol. 94(3), pages 653-663, September.
    18. Hollenbach, Florian M. & Montgomery, Jacob M. & Crespo-Tenorio, Adriana, 2019. "Bayesian Versus Maximum Likelihood Estimation of Treatment Effects in Bivariate Probit Instrumental Variable Models," Political Science Research and Methods, Cambridge University Press, vol. 7(3), pages 651-659, July.
    19. Vij, Akshay & Walker, Joan L., 2014. "Preference endogeneity in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 90-105.
    20. Andrew Chesher & Adam M. Rosen & Konrad Smolinski, 2013. "An instrumental variable model of multiple discrete choice," Quantitative Economics, Econometric Society, vol. 4(2), pages 157-196, July.
    21. van Hasselt, Martijn, 2011. "Bayesian inference in a sample selection model," Journal of Econometrics, Elsevier, vol. 165(2), pages 221-232.
    22. Alan Gerber & Donald Green, 2000. "The effects of canvassing, direct mail, and telephone contact on voter turnout: A field experiment," Natural Field Experiments 00248, The Field Experiments Website.
    23. Freedman, David A. & Sekhon, Jasjeet S., 2010. "Endogeneity in Probit Response Models," Political Analysis, Cambridge University Press, vol. 18(2), pages 138-150, April.
    24. Li, Haiying & Li, Xian & Xu, Xinyue & Liu, Jun & Ran, Bin, 2018. "Modeling departure time choice of metro passengers with a smart corrected mixed logit model - A case study in Beijing," Transport Policy, Elsevier, vol. 69(C), pages 106-121.
    25. Yai, Tetsuo & Iwakura, Seiji & Morichi, Shigeru, 1997. "Multinomial probit with structured covariance for route choice behavior," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 195-207, June.
    26. Astroza, Sebastian & Bhat, Aarti C., 2016. "On allowing a general form for unobserved heterogeneity in the multiple discrete–continuous probit model: Formulation and application to tourism travelAuthor-Name: Bhat, Chandra R," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 223-249.
    27. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    28. Guevara, C. Angelo & Hess, Stephane, 2019. "A control-function approach to correct for endogeneity in discrete choice models estimated on SP-off-RP data and contrasts with an earlier FIML approach by Train & Wilson," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 224-239.
    29. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    30. Guevara, C. Angelo & Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs, 2020. "Correcting for endogeneity due to omitted crowding in public transport choice using the Multiple Indicator Solution (MIS) method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 472-484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
    2. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián, 2024. "Impact of omitted variable and simultaneous estimation endogeneity in choice-based revenue management systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
    2. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián, 2024. "Impact of omitted variable and simultaneous estimation endogeneity in choice-based revenue management systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    3. de Grange, Louis & González, Felipe & Marechal, Matthieu & Troncoso, Rodrigo, 2024. "Estimating multinomial logit models with endogenous variables: Control function versus two adapted approaches," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    4. Li, Haiying & Li, Xian & Xu, Xinyue & Liu, Jun & Ran, Bin, 2018. "Modeling departure time choice of metro passengers with a smart corrected mixed logit model - A case study in Beijing," Transport Policy, Elsevier, vol. 69(C), pages 106-121.
    5. Gopalakrishnan, Raja & Guevara, C. Angelo & Ben-Akiva, Moshe, 2020. "Combining multiple imputation and control function methods to deal with missing data and endogeneity in discrete-choice models," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 45-57.
    6. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    7. Guevara, C. Angelo, 2018. "Overidentification tests for the exogeneity of instruments in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 241-253.
    8. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    9. Kim, Sung Hoo & Mokhtarian, Patricia L., 2018. "Taste heterogeneity as an alternative form of endogeneity bias: Investigating the attitude-moderated effects of built environment and socio-demographics on vehicle ownership using latent class modelin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 130-150.
    10. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2018. "Modeling competition among airline itineraries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 157-172.
    11. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    12. Rahman, Moshiur & Yasmin, Shamsunnahar & Eluru, Naveen, 2019. "Controlling for endogeneity between bus headway and bus ridership: A case study of the Orlando region," Transport Policy, Elsevier, vol. 81(C), pages 208-219.
    13. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    14. Danaf, Mazen & Guevara, Angelo & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Endogeneity in adaptive choice contexts: Choice-based recommender systems and adaptive stated preferences surveys," Journal of choice modelling, Elsevier, vol. 34(C).
    15. Danaf, Mazen & Guevara, C. Angelo & Ben-Akiva, Moshe, 2023. "A control-function correction for endogeneity in random coefficients models: The case of choice-based recommender systems," Journal of choice modelling, Elsevier, vol. 46(C).
    16. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    17. León, Gianmarco, 2017. "Turnout, political preferences and information: Experimental evidence from Peru," Journal of Development Economics, Elsevier, vol. 127(C), pages 56-71.
    18. Chesher, Andrew, 2013. "Semiparametric Structural Models Of Binary Response: Shape Restrictions And Partial Identification," Econometric Theory, Cambridge University Press, vol. 29(2), pages 231-266, April.
    19. Maness, Michael & Cirillo, Cinzia, 2016. "An indirect latent informational conformity social influence choice model: Formulation and case study," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 75-101.
    20. Salomo Hirvonen & Jerome Schafer & Janne Tukiainen, 2022. "Policy Feedback and Civic Engagement: Evidence from the Finnish Basic Income Experiment," Discussion Papers 155, Aboa Centre for Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:46:y:2023:i:c:s1755534523000015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.