IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v69y2018icp106-121.html
   My bibliography  Save this article

Modeling departure time choice of metro passengers with a smart corrected mixed logit model - A case study in Beijing

Author

Listed:
  • Li, Haiying
  • Li, Xian
  • Xu, Xinyue
  • Liu, Jun
  • Ran, Bin

Abstract

It is critical to improve the effectiveness of demand management in metro systems with passenger departure time choice exactly learned during peak hours. In this study, a practical framework is developed to model departure time choice of metro passengers during peak hours. First, various attributes that influence departure time choice of metro passengers are investigated and the technique for order preference by similarity to ideal solutions (TOPSIS) is used to identify these main attributes. Then, a mixed logit (ML) model of departure time choice that accounts for price endogeneity is developed. To calibrate the model, a stated preference (SP) survey based on D-efficient design is conducted in the Beijing metro system. It is proved that the corrected ML model outperforms the uncorrected ML model according to the collected 1152 sample data. An elasticity analysis of these main attributes is further conducted, which indicates that metro fare and departure time change influence passenger departure time choice more than crowdedness in Beijing metro. Knowledge of these preferences assists traffic managers in balancing passenger departure time to mitigate overcrowding during peak hours. Heterogeneity of passenger socioeconomic and trip characteristics is also concerned taking advantage of ML model. Finally, a ML-based fare discount strategy to ease the crowdedness in Batong Line of Beijing metro is presented and evaluated via an existing simulation tool.

Suggested Citation

  • Li, Haiying & Li, Xian & Xu, Xinyue & Liu, Jun & Ran, Bin, 2018. "Modeling departure time choice of metro passengers with a smart corrected mixed logit model - A case study in Beijing," Transport Policy, Elsevier, vol. 69(C), pages 106-121.
  • Handle: RePEc:eee:trapol:v:69:y:2018:i:c:p:106-121
    DOI: 10.1016/j.tranpol.2018.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17304080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2018.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Kyung Min & Hong, Sung-Pil & Ko, Suk-Joon & Kim, Dowon, 2015. "Does crowding affect the path choice of metro passengers?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 292-304.
    2. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    3. Lurkin, Virginie & Garrow, Laurie A. & Higgins, Matthew J. & Newman, Jeffrey P. & Schyns, Michael, 2017. "Accounting for price endogeneity in airline itinerary choice models: An application to Continental U.S. markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 228-246.
    4. Rose, John M. & Bliemer, Michiel C.J. & Hensher, David A. & Collins, Andrew T., 2008. "Designing efficient stated choice experiments in the presence of reference alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 395-406, May.
    5. Nurul Habib, Khandker M. & Day, Nicholas & Miller, Eric J., 2009. "An investigation of commuting trip timing and mode choice in the Greater Toronto Area: Application of a joint discrete-continuous model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(7), pages 639-653, August.
    6. Jou, Rong-Chang, 2001. "Modeling the impact of pre-trip information on commuter departure time and route choice," Transportation Research Part B: Methodological, Elsevier, vol. 35(10), pages 887-902, November.
    7. Xu, Xin-yue & Liu, Jun & Li, Hai-ying & Jiang, Man, 2016. "Capacity-oriented passenger flow control under uncertain demand: Algorithm development and real-world case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 130-148.
    8. Vij, Akshay & Walker, Joan L., 2014. "Preference endogeneity in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 90-105.
    9. Wei Wang & Li Huang & Zhaoxia Guo, 2017. "Optimization of Emergency Material Dispatch from Multiple Depot Locations to Multiple Disaster Sites," Sustainability, MDPI, vol. 9(11), pages 1-8, October.
    10. Thorhauge, Mikkel & Cherchi, Elisabetta & Rich, Jeppe, 2016. "How flexible is flexible? Accounting for the effect of rescheduling possibilities in choice of departure time for work trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 177-193.
    11. Kou, Weibin & Chen, Xumei & Yu, Lei & Qi, Yi & Wang, Ying, 2017. "Urban commuters’ valuation of travel time reliability based on stated preference survey: A case study of Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 372-380.
    12. He, Sylvia Y., 2013. "Does flexitime affect choice of departure time for morning home-based commuting trips? Evidence from two regions in California," Transport Policy, Elsevier, vol. 25(C), pages 210-221.
    13. Aydin, Nezir, 2017. "A fuzzy-based multi-dimensional and multi-period service quality evaluation outline for rail transit systems," Transport Policy, Elsevier, vol. 55(C), pages 87-98.
    14. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    15. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    16. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    17. Saleh, Wafaa & Farrell, Séona, 2005. "Implications of congestion charging for departure time choice: Work and non-work schedule flexibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(7-9), pages 773-791.
    18. Walker, Joan L. & Ehlers, Emily & Banerjee, Ipsita & Dugundji, Elenna R., 2011. "Correcting for endogeneity in behavioral choice models with social influence variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(4), pages 362-374, May.
    19. Hess, Stephane & Daly, Andrew & Rohr, Charlene & Hyman, Geoff, 2007. "On the development of time period and mode choice models for use in large scale modelling forecasting systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(9), pages 802-826, November.
    20. de Jong, Gerard & Daly, Andrew & Pieters, Marits & Vellay, Carine & Bradley, Mark & Hofman, Frank, 2003. "A model for time of day and mode choice using error components logit," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(3), pages 245-268, May.
    21. Sadhukhan, Shubhajit & Banerjee, Uttam K. & Maitra, Bhargab, 2016. "Commuters’ willingness-to-pay for improvement of transfer facilities in and around metro stations – A case study in Kolkata," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 43-58.
    22. Lemp, Jason D. & Kockelman, Kara M. & Damien, Paul, 2010. "The continuous cross-nested logit model: Formulation and application for departure time choice," Transportation Research Part B: Methodological, Elsevier, vol. 44(5), pages 646-661, June.
    23. Kamargianni, Maria & Dubey, Subodh & Polydoropoulou, Amalia & Bhat, Chandra, 2015. "Investigating the subjective and objective factors influencing teenagers’ school travel mode choice – An integrated choice and latent variable model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 473-488.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Singh, Jyotsna & Homem de Almeida Correia, Gonçalo & van Wee, Bert & Barbour, Natalia, 2023. "Change in departure time for a train trip to avoid crowding during the COVID-19 pandemic: A latent class study in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    2. Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
    3. Suchi Kapoor Malhotra & Howard White & Nina Ashley O. Dela Cruz & Ashrita Saran & John Eyers & Denny John & Ella Beveridge & Nina Blöndal, 2021. "Studies of the effectiveness of transport sector interventions in low‐ and middle‐income countries: An evidence and gap map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(4), December.
    4. Kim, Ga-Eun & Kim, Ju-Hee & Yoo, Seung-Hoon, 2019. "South Korean consumers’ preferences for eco-friendly gasoline sedans: Results from a choice experiment survey," Transport Policy, Elsevier, vol. 77(C), pages 1-7.
    5. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Wang, Qing & Zhao, Wenjing & Ma, Shoufeng & Schonfeld, Paul M. & Zheng, Yue & Xue, Dabin, 2023. "Effects of a price incentive policy on urban rail transit passengers: A case study in Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    7. Zannat, Khatun E. & Choudhury, Charisma F. & Hess, Stephane, 2024. "Modelling time-of-travel preferences capturing correlations between departure times and activity durations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    8. Chen, Pengfang & Zhang, Xiaoqiang & Gao, Dongsheng, 2024. "Preference heterogeneity analysis on train choice behaviour of high-speed railway passengers: A case study in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 188(C).
    9. Xu, Xinyue & Liu, Jing & Zhang, Anzhong & XieLan, Shiyu & Li, Zinuo & Liu, Jun & Ran, Bin, 2024. "The impacts of COVID-19 on route choice with guidance information in urban rail transit of megacities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    10. Bi, Hui & Li, Aoyong & Hua, Mingzhuang & Zhu, He & Ye, Zhirui, 2022. "Examining the varying influences of built environment on bike-sharing commuting: Empirical evidence from Shanghai," Transport Policy, Elsevier, vol. 129(C), pages 51-65.
    11. Lizana, Pedro & Ortúzar, Juan de Dios & Arellana, Julián & Rizzi, Luis I., 2021. "Forecasting with a joint mode/time-of-day choice model based on combined RP and SC data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 302-316.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
    2. Zannat, Khatun E. & Choudhury, Charisma F. & Hess, Stephane, 2024. "Modelling time-of-travel preferences capturing correlations between departure times and activity durations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 184(C).
    3. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián, 2024. "Impact of omitted variable and simultaneous estimation endogeneity in choice-based revenue management systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    4. Palhazi Cuervo, Daniel & Kessels, Roselinde & Goos, Peter & Sörensen, Kenneth, 2016. "An integrated algorithm for the optimal design of stated choice experiments with partial profiles," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 648-669.
    5. Sanjana Hossain & Md. Sami Hasnine & Khandker Nurul Habib, 2021. "A latent class joint mode and departure time choice model for the Greater Toronto and Hamilton Area," Transportation, Springer, vol. 48(3), pages 1217-1239, June.
    6. Haiyan Zhu & Hongzhi Guan & Yan Han & Wanying Li, 2020. "Can Road Toll Convince Car Travelers to Adjust Their Departure Times? Accounting for the Effect of Choice Behavior under Long and Short Holidays," Sustainability, MDPI, vol. 12(24), pages 1-29, December.
    7. Kun Gao & Minhua Shao & Kay W. Axhausen & Lijun Sun & Huizhao Tu & Yihong Wang, 2022. "Inertia effects of past behavior in commuting modal shift behavior: interactions, variations and implications for demand estimation," Transportation, Springer, vol. 49(4), pages 1063-1097, August.
    8. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    9. Román, Concepción & Martín, Juan Carlos, 2014. "Integration of HSR and air transport: Understanding passengers’ preferences," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 129-141.
    10. Reema Bera & Bhargab Maitra, 2021. "Analyzing Prospective Owners’ Choice Decision towards Plug-in Hybrid Electric Vehicles in Urban India: A Stated Preference Discrete Choice Experiment," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    11. Ghader, Sepehr & Carrion, Carlos & Zhang, Lei, 2019. "Autoregressive continuous logit: Formulation and application to time-of-day choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 240-257.
    12. Saxena, N. & Rashidi, T.H. & Dixit, V.V. & Waller, S.T., 2019. "Modelling the route choice behaviour under stop-&-go traffic for different car driver segments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 62-72.
    13. Guevara, C. Angelo, 2018. "Overidentification tests for the exogeneity of instruments in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 241-253.
    14. Kim, Sung Hoo & Mokhtarian, Patricia L., 2018. "Taste heterogeneity as an alternative form of endogeneity bias: Investigating the attitude-moderated effects of built environment and socio-demographics on vehicle ownership using latent class modelin," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 130-150.
    15. Khan, Mubassira & Machemehl, Randy, 2017. "Commercial vehicles time of day choice behavior in urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 68-83.
    16. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    17. Mallikarjun Patil & Bandhan Bandhu Majumdar & Prasanta Kumar Sahu & Long T. Truong, 2021. "Evaluation of Prospective Users’ Choice Decision toward Electric Two-Wheelers Using a Stated Preference Survey: An Indian Perspective," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    18. Sasic, Ana & Habib, Khandker Nurul, 2013. "Modelling departure time choices by a Heteroskedastic Generalized Logit (Het-GenL) model: An investigation on home-based commuting trips in the Greater Toronto and Hamilton Area (GTHA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 50(C), pages 15-32.
    19. Johannes Dahlin & Verena Halbherr & Peter Kurz & Michael Nelles & Carsten Herbes, 2016. "Marketing Green Fertilizers: Insights into Consumer Preferences," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    20. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:69:y:2018:i:c:p:106-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.