IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v49y2022i4d10.1007_s11116-021-10203-6.html
   My bibliography  Save this article

Inertia effects of past behavior in commuting modal shift behavior: interactions, variations and implications for demand estimation

Author

Listed:
  • Kun Gao

    (Chalmers University of Technology)

  • Minhua Shao

    (Tongji University, Key Laboratory of Road and Traffic Engineering of the Ministry of Education)

  • Kay W. Axhausen

    (ETH Zurich)

  • Lijun Sun

    (Tongji University, Key Laboratory of Road and Traffic Engineering of the Ministry of Education)

  • Huizhao Tu

    (Tongji University, Key Laboratory of Road and Traffic Engineering of the Ministry of Education)

  • Yihong Wang

    (Delft University of Technology)

Abstract

This paper focuses on empirically investigating the inertia effects of past behavior in commuting modal shift behavior and contributes to the current state of the art by three aspects. Firstly, this study introduces and tests the potential influences of the inertia effects of past behavior on the traveler’s preferences regarding level-of-service (LOS) variables, besides the impacts of inertia effects on the preference for the frequently used transport mode in the past. Secondly, the mode-specific inertia effects are investigated to distinguish the differences in the inertia effects for different transport modes based on posterior individual-specific parameter estimations. Thirdly, the factors contributing to the heterogeneity of inertia effects including demographics and travel contexts, are quantitatively examined. A joint random parameter logit model using a revealed and stated preference survey regarding commuting behavior is employed to unravel the three aspects. The results reveal significant interactions of inertia terms with LOS variables indicating the influences of past behavior on travelers’ evaluations on attributes of their previous choices. The mean values and variances of inertia effects for different transport modes are significantly and substantially distinct. For instance, the inertia effects of frequently using car are substantially positive representing strong stickiness to the car, while the inertia effects of frequently using the metro have large variances among travelers and mostly appear as dispositions to change. Besides, the effects of personal characteristics and travel contexts on the magnitude of the inertia effects of different transport modes are identified as well. A demand estimation analysis is utilized to investigate the influences of three aspects on predicting travel demands in various contexts. Incorporating the interactions and mode-specific inertia effects can remarkably improve the model performance. The demand estimation will be biased if they are neglected.

Suggested Citation

  • Kun Gao & Minhua Shao & Kay W. Axhausen & Lijun Sun & Huizhao Tu & Yihong Wang, 2022. "Inertia effects of past behavior in commuting modal shift behavior: interactions, variations and implications for demand estimation," Transportation, Springer, vol. 49(4), pages 1063-1097, August.
  • Handle: RePEc:kap:transp:v:49:y:2022:i:4:d:10.1007_s11116-021-10203-6
    DOI: 10.1007/s11116-021-10203-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10203-6
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10203-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simon, Herbert A, 1978. "Rationality as Process and as Product of Thought," American Economic Review, American Economic Association, vol. 68(2), pages 1-16, May.
    2. Swait, Joffre & Adamowicz, Wiktor & Bueren, Martin van, 2004. "Choice and temporal welfare impacts: incorporating history into discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 47(1), pages 94-116, January.
    3. Víctor Cantillo & Juan de Dios Ortúzar & Huw C. W. L. Williams, 2007. "Modeling Discrete Choices in the Presence of Inertia and Serial Correlation," Transportation Science, INFORMS, vol. 41(2), pages 195-205, May.
    4. Li, Hao & Gao, Kun & Tu, Huizhao, 2017. "Variations in mode-specific valuations of travel time reliability and in-vehicle crowding: Implications for demand estimation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 250-263.
    5. Job Exel & Piet Rietveld, 2004. "Inertia of Travel Behaviour: A Stated Preference Analysis of Commuting," Advances in Spatial Science, in: Michel Beuthe & Veli Himanen & Aura Reggiani & Luca Zamparini (ed.), Transport Developments and Innovations in an Evolving World, chapter 6, pages 87-122, Springer.
    6. Rose, John M. & Bliemer, Michiel C.J. & Hensher, David A. & Collins, Andrew T., 2008. "Designing efficient stated choice experiments in the presence of reference alternatives," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 395-406, May.
    7. Robert Schlich & Kay Axhausen, 2003. "Habitual travel behaviour: Evidence from a six-week travel diary," Transportation, Springer, vol. 30(1), pages 13-36, February.
    8. Rashedi, Zohreh & Mahmoud, Mohamed & Hasnine, Sami & Habib, Khandker Nurul, 2017. "On the factors affecting the choice of regional transit for commuting in Greater Toronto and Hamilton Area: Application of an advanced RP-SP choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 1-13.
    9. González, Rosa Marina & Marrero, Ángel Simón & Cherchi, Elisabetta, 2017. "Testing for inertia effect when a new tram is implemented," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 150-159.
    10. Francisco Amador & Rosa González & Juan Dios Ortúzar, 2008. "On Confounding Preference Heterogeneity and Income Effect in Discrete Choice Models," Networks and Spatial Economics, Springer, vol. 8(2), pages 97-108, September.
    11. Börjesson, Maria & Eliasson, Jonas, 2014. "Experiences from the Swedish Value of Time study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 144-158.
    12. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    13. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    14. Elisabetta Cherchi & Cinzia Cirillo, 2014. "Understanding variability, habit and the effect of long period activity plan in modal choices: a day to day, week to week analysis on panel data," Transportation, Springer, vol. 41(6), pages 1245-1262, November.
    15. Elisabetta Cherchi & Juan de Dios Ortúzar, 2011. "On the Use of Mixed RP/SP Models in Prediction: Accounting for Systematic and Random Taste Heterogeneity," Transportation Science, INFORMS, vol. 45(1), pages 98-108, February.
    16. Axhausen, Kay W. & Hess, Stephane & König, Arnd & Abay, Georg & Bates, John J. & Bierlaire, Michel, 2008. "Income and distance elasticities of values of travel time savings: New Swiss results," Transport Policy, Elsevier, vol. 15(3), pages 173-185, May.
    17. Jörgen Garvill & Agneta Marell & Annika Nordlund, 2003. "Effects of increased awareness on choice of travel mode," Transportation, Springer, vol. 30(1), pages 63-79, February.
    18. Elisabetta Cherchi & Juan Ortúzar, 2002. "Mixed RP/SP models incorporating interaction effects," Transportation, Springer, vol. 29(4), pages 371-395, November.
    19. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    20. Idris, Ahmed Osman & Nurul Habib, Khandker M. & Shalaby, Amer, 2015. "An investigation on the performances of mode shift models in transit ridership forecasting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 551-565.
    21. Márquez, Luis & Pico, Ricardo & Cantillo, Víctor, 2018. "Understanding captive user behavior in the competition between BRT and motorcycle taxis," Transport Policy, Elsevier, vol. 61(C), pages 1-9.
    22. Alessandro Vacca & Carlo Giacomo Prato & Italo Meloni, 2019. "Should I stay or should I go? Investigating route switching behavior from revealed preferences data," Transportation, Springer, vol. 46(1), pages 75-93, February.
    23. Elisabetta Cherchi & Francesco Manca, 2011. "Accounting for inertia in modal choices: some new evidence using a RP/SP dataset," Transportation, Springer, vol. 38(4), pages 679-695, July.
    24. Tirachini, Alejandro & Sun, Lijun & Erath, Alexander & Chakirov, Artem, 2016. "Valuation of sitting and standing in metro trains using revealed preferences," Transport Policy, Elsevier, vol. 47(C), pages 94-104.
    25. Adamowicz, Wiktor L., 1994. "Habit Formation And Variety Seeking In A Discrete Choice Model Of Recreation Demand," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 19(1), pages 1-13, July.
    26. Kiron Chatterjee, 2011. "Modelling the dynamics of bus use in a changing travel environment using panel data," Transportation, Springer, vol. 38(3), pages 487-509, May.
    27. Bhat, Chandra R. & Castelar, Saul, 2002. "A unified mixed logit framework for modeling revealed and stated preferences: formulation and application to congestion pricing analysis in the San Francisco Bay area," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 593-616, August.
    28. Xie, Chi & Liu, Zugang, 2014. "On the stochastic network equilibrium with heterogeneous choice inertia," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 90-109.
    29. Sadhukhan, Shubhajit & Banerjee, Uttam K. & Maitra, Bhargab, 2016. "Commuters’ willingness-to-pay for improvement of transfer facilities in and around metro stations – A case study in Kolkata," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 43-58.
    30. Francisco Amador & Rosa González & Juan Ortúzar, 2005. "Preference Heterogeneity and Willingness to Pay for Travel Time Savings," Transportation, Springer, vol. 32(6), pages 627-647, November.
    31. Karthik Srinivasan & P. Bhargavi, 2007. "Longer-term changes in mode choice decisions in Chennai: a comparison between cross-sectional and dynamic models," Transportation, Springer, vol. 34(3), pages 355-374, May.
    32. Thorhauge, Mikkel & Swait, Joffre & Cherchi, Elisabetta, 2020. "The habit-driven life: Accounting for inertia in departure time choices for commuting trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 272-289.
    33. Li, Zheng & Hensher, David A., 2011. "Crowding and public transport: A review of willingness to pay evidence and its relevance in project appraisal," Transport Policy, Elsevier, vol. 18(6), pages 880-887, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Fernanda Guajardo Ortega & Heike Link, 2023. "Estimating Mode Choice Inertia and Price Elasticities after a Price Intervention – Evidence from Three Months of almost Fare-free Public Transport in Germany," Discussion Papers of DIW Berlin 2052, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González, Rosa Marina & Marrero, Ángel Simón & Cherchi, Elisabetta, 2017. "Testing for inertia effect when a new tram is implemented," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 150-159.
    2. Schmid, Basil & Jokubauskaite, Simona & Aschauer, Florian & Peer, Stefanie & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2019. "A pooled RP/SP mode, route and destination choice model to investigate mode and user-type effects in the value of travel time savings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 262-294.
    3. Elisabetta Cherchi & Francesco Manca, 2011. "Accounting for inertia in modal choices: some new evidence using a RP/SP dataset," Transportation, Springer, vol. 38(4), pages 679-695, July.
    4. Weibo Li & Maria Kamargianni, 2020. "Steering short-term demand for car-sharing: a mode choice and policy impact analysis by trip distance," Transportation, Springer, vol. 47(5), pages 2233-2265, October.
    5. Juan de Dios Ortúzar & Elisabetta Cherchi & Luis Ignacio Rizzi, 2014. "Transport research needs," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 29, pages 688-698, Edward Elgar Publishing.
    6. Smith, Martin D., 2005. "State dependence and heterogeneity in fishing location choice," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 319-340, September.
    7. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    8. Kazagli, Evanthia & de Lapparent, Matthieu, 2023. "A discrete choice modeling framework of heterogenous decision rules accounting for non-trading behavior," Journal of choice modelling, Elsevier, vol. 48(C).
    9. Hossan, Md Sakoat & Asgari, Hamidreza & Jin, Xia, 2016. "Investigating preference heterogeneity in Value of Time (VOT) and Value of Reliability (VOR) estimation for managed lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 638-649.
    10. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    11. Gao, Kun & Sun, Lijun & Yang, Ying & Meng, Fanyu & Qu, Xiaobo, 2021. "Cumulative prospect theory coupled with multi-attribute decision making for modeling travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 1-21.
    12. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    13. Márquez, Luis & Alfonso A, Julieth V. & Poveda, Juan C., 2019. "In-vehicle crowding: Integrating tangible attributes, attitudes, and perceptions in a choice context between BRT and metro," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 452-465.
    14. Schmid, Basil & Molloy, Joseph & Peer, Stefanie & Jokubauskaite, Simona & Aschauer, Florian & Hössinger, Reinhard & Gerike, Regine & Jara-Diaz, Sergio R. & Axhausen, Kay W., 2021. "The value of travel time savings and the value of leisure in Zurich: Estimation, decomposition and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 186-215.
    15. Prateek Bansal & Daniel Horcher & Daniel J. Graham, 2020. "A Dynamic Choice Model with Heterogeneous Decision Rules: Application in Estimating the User Cost of Rail Crowding," Papers 2007.03682, arXiv.org.
    16. Sadhukhan, Shubhajit & Banerjee, Uttam K. & Maitra, Bhargab, 2016. "Commuters’ willingness-to-pay for improvement of transfer facilities in and around metro stations – A case study in Kolkata," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 43-58.
    17. Thorhauge, Mikkel & Swait, Joffre & Cherchi, Elisabetta, 2020. "The habit-driven life: Accounting for inertia in departure time choices for commuting trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 272-289.
    18. Alessandro Vacca & Carlo Giacomo Prato & Italo Meloni, 2019. "Should I stay or should I go? Investigating route switching behavior from revealed preferences data," Transportation, Springer, vol. 46(1), pages 75-93, February.
    19. Amador, Francisco Javier & González, Rosa Marina & Ramos-Real, Francisco Javier, 2013. "Supplier choice and WTP for electricity attributes in an emerging market: The role of perceived past experience, environmental concern and energy saving behavior," Energy Economics, Elsevier, vol. 40(C), pages 953-966.
    20. Bera, Reema & Maitra, Bhargab, 2021. "Assessing consumer preferences for Plug-in Hybrid Electric Vehicle (PHEV): An Indian perspective," Research in Transportation Economics, Elsevier, vol. 90(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:49:y:2022:i:4:d:10.1007_s11116-021-10203-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.