IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v53y2024ics1755534524000551.html
   My bibliography  Save this article

A consistent moment equations for binary probit models with endogenous variables using instrumental variables

Author

Listed:
  • de Grange, Louis
  • González, Felipe
  • Marechal, Matthieu
  • Troncoso, Rodrigo

Abstract

A methodology is developed for obtaining consistent moment estimators of the parameters in probit models that include both exogenous and endogenous variables. The approach is based on the use of instrumental variables in the formulation of moment conditions in order to solve a system of equations from which the consistent estimators are derived. The moment conditions also enable the correlations between the endogenous variables and the error terms to be estimated. Comparisons with uncorrected maximum likelihood and Heckman's classic two-stage method using simulated data demonstrate that the proposed method generates consistent estimators with relatively smaller mean square errors. We also apply our method to a real data case, confirming the good estimation properties of our new approach.

Suggested Citation

  • de Grange, Louis & González, Felipe & Marechal, Matthieu & Troncoso, Rodrigo, 2024. "A consistent moment equations for binary probit models with endogenous variables using instrumental variables," Journal of choice modelling, Elsevier, vol. 53(C).
  • Handle: RePEc:eee:eejocm:v:53:y:2024:i:c:s1755534524000551
    DOI: 10.1016/j.jocm.2024.100523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534524000551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2024.100523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mourifié, Ismael & Méango, Romuald, 2014. "A note on the identification in two equations probit model with dummy endogenous regressor," Economics Letters, Elsevier, vol. 125(3), pages 360-363.
    2. Sukjin Han & Sungwon Lee, 2019. "Estimation in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 994-1015, September.
    3. Watanabe, Hajime & Maruyama, Takuya, 2023. "A Bayesian instrumental variable model for multinomial choice with correlated alternatives," Journal of choice modelling, Elsevier, vol. 46(C).
    4. Braumoeller, Bear F. & Marra, Giampiero & Radice, Rosalba & Bradshaw, Aisha E., 2018. "Flexible Causal Inference for Political Science," Political Analysis, Cambridge University Press, vol. 26(1), pages 54-71, January.
    5. Santiago Acerenza & Otávio Bartalotti & Désiré Kédagni, 2023. "Testing identifying assumptions in bivariate probit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 407-422, April.
    6. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    7. Piras, Gianfranco & Sarrias, Mauricio, 2023. "One or two-step? Evaluating GMM efficiency for spatial binary probit models," Journal of choice modelling, Elsevier, vol. 48(C).
    8. Mariam Djelassi, 2024. "Training services and repayment performance of micro-borrowers in Tunisia," Applied Economics, Taylor & Francis Journals, vol. 56(17), pages 2008-2024, April.
    9. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    10. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    11. Lucchetti, Riccardo, 2002. "Inconsistency of naive GMM estimation for QR models with endogenous regressors," Economics Letters, Elsevier, vol. 75(2), pages 179-185, April.
    12. Pietro De Ponti & Valeria Gattai, 2023. "Family firms, productivity and input specificity: An empirical assessment of Italian firms’ sourcing," Applied Economics, Taylor & Francis Journals, vol. 55(52), pages 6133-6148, November.
    13. Takeshi Amemiya, 1975. "Qualitative Response Models," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 4, number 3, pages 363-372, National Bureau of Economic Research, Inc.
    14. Amemiya, Takeshi, 1978. "The Estimation of a Simultaneous Equation Generalized Probit Model," Econometrica, Econometric Society, vol. 46(5), pages 1193-1205, September.
    15. Astroza, Sebastian & Guarda, Pablo & Carrasco, Juan Antonio, 2022. "Modeling the relationship between food purchasing, transport, and health outcomes: Evidence from Concepcion, Chile," Journal of choice modelling, Elsevier, vol. 42(C).
    16. Wilde, Joachim, 2000. "Identification of multiple equation probit models with endogenous dummy regressors," Economics Letters, Elsevier, vol. 69(3), pages 309-312, December.
    17. Zhou, Xianbo & Li, Heyang, 2021. "Interaction and quadratic effects in probit model with endogenous regressors," Economics Letters, Elsevier, vol. 198(C).
    18. Harry H. Kelejian & Ingmar R. Prucha & Yevgeny Yuzefovich, 2004. "Instrumental Variable Estimation Of A Spatial Autoregressive Model With Autoregressive Disturbances: Large And Small Sample Results," Advances in Econometrics, in: Spatial and Spatiotemporal Econometrics, pages 163-198, Emerald Group Publishing Limited.
    19. Grogger, Jeffrey, 1990. "A simple test for exogeneity in probit, logit, and poisson regression models," Economics Letters, Elsevier, vol. 33(4), pages 329-332, August.
    20. Dagenais, Marcel G., 1999. "Inconsistency of a proposed nonlinear instrumental variables estimator for probit and logit models with endogenous regressors," Economics Letters, Elsevier, vol. 63(1), pages 19-21, April.
    21. Han, Sukjin & Vytlacil, Edward J., 2017. "Identification in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Econometrics, Elsevier, vol. 199(1), pages 63-73.
    22. Freedman, David A. & Sekhon, Jasjeet S., 2010. "Endogeneity in Probit Response Models," Political Analysis, Cambridge University Press, vol. 18(2), pages 138-150, April.
    23. Guevara, C. Angelo & Hess, Stephane, 2019. "A control-function approach to correct for endogeneity in discrete choice models estimated on SP-off-RP data and contrasts with an earlier FIML approach by Train & Wilson," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 224-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    2. Han, Sukjin & Vytlacil, Edward J., 2017. "Identification in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Econometrics, Elsevier, vol. 199(1), pages 63-73.
    3. J. E. Prieger & A. Choi, 2024. "E-cigarettes and Smoking: Correlation, Causation, and Selection Bias," Journal of Consumer Policy, Springer, vol. 47(4), pages 471-498, December.
    4. Li, Chuhui & Poskitt, D.S. & Zhao, Xueyan, 2019. "The bivariate probit model, maximum likelihood estimation, pseudo true parameters and partial identification," Journal of Econometrics, Elsevier, vol. 209(1), pages 94-113.
    5. Santiago Acerenza & Otávio Bartalotti & Désiré Kédagni, 2023. "Testing identifying assumptions in bivariate probit models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 407-422, April.
    6. Craig E. Landry & Dylan Turner & Daniel Petrolia, 2021. "Flood Insurance Market Penetration and Expectations of Disaster Assistance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 357-386, June.
    7. Sukjin Han & Sungwon Lee, 2019. "Estimation in a generalization of bivariate probit models with dummy endogenous regressors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 994-1015, September.
    8. Watanabe, Hajime & Maruyama, Takuya, 2024. "A Bayesian sample selection model with a binary outcome for handling residential self-selection in individual car ownership," Journal of choice modelling, Elsevier, vol. 51(C).
    9. Daiji Kawaguchi & Yukitoshi Matsushita & Hisahiro Naito, 2017. "Moment Estimation of the Probit Model with an Endogenous Continuous Regressor," The Japanese Economic Review, Japanese Economic Association, vol. 68(1), pages 48-62, March.
    10. Hessami, Zohal & Resnjanskij, Sven, 2019. "Complex ballot propositions, individual voting behavior, and status quo bias," European Journal of Political Economy, Elsevier, vol. 58(C), pages 82-101.
    11. Manuel Denzer, 2019. "Estimating Causal Effects in Binary Response Models with Binary Endogenous Explanatory Variables - A Comparison of Possible Estimators," Working Papers 1916, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    12. Daiji Kawaguchi & Hisahiro Naito, 2005. "The efficient moment estimation of the probit model with an endogenous continuous regressor," Hi-Stat Discussion Paper Series d05-106, Institute of Economic Research, Hitotsubashi University.
    13. Zhou Xun, 2015. "Preference for Redistribution and Inequality Perception in China: Evidence from the CGSS 2006," AMSE Working Papers 1518, Aix-Marseille School of Economics, France.
    14. Massimiliano Bratti, 2003. "Labour force participation and marital fertility of Italian women: The role of education," Journal of Population Economics, Springer;European Society for Population Economics, vol. 16(3), pages 525-554, August.
    15. Giampiero Marra & Rosalba Radice & Silvia Missiroli, 2014. "Testing the hypothesis of absence of unobserved confounding in semiparametric bivariate probit models," Computational Statistics, Springer, vol. 29(3), pages 715-741, June.
    16. Li, Chuhui & Cheng, Wenli & Shi, Hui, 2021. "Early marriage and maternal health care utilisation: Evidence from sub-Saharan Africa," Economics & Human Biology, Elsevier, vol. 43(C).
    17. Aydemir, Abdurrahman, 2002. "Effects of Selection Criteria and Economic Opportunities on the Characteristics of Immigrants," Analytical Studies Branch Research Paper Series 2002182e, Statistics Canada, Analytical Studies Branch.
    18. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    19. Legendre, Nicolas & Nitani, Miwako & Riding, Allan, 2021. "Are franchises really more viable? Evidence from loan defaults," Journal of Business Research, Elsevier, vol. 133(C), pages 23-33.
    20. Alfonso Miranda & Sophia Rabe-Hesketh, 2006. "Maximum likelihood estimation of endogenous switching and sample selection models for binary, ordinal, and count variables," Stata Journal, StataCorp LP, vol. 6(3), pages 285-308, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:53:y:2024:i:c:s1755534524000551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.