IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_6606.html
   My bibliography  Save this paper

Public Transport and Urban Pollution

Author

Listed:
  • Rainald Borck

Abstract

The paper studies the effect of public transport policies on urban pollution. It uses a quantitative equilibrium model with residential choice and mode choice. Pollution comes from commuting and residential energy use. The model parameters are calibrated to replicate key variables for American metropolitan areas. In the counterfactual, I study how free public transport coupled with increasing transit speed affects the equilibrium. In the baseline simulation, total pollution falls by 0.2%, as decreasing emissions from transport are partly offset by rising residential emissions. A second counterfactual compares a city with and without public transit. This large investment decreases pollution by 1.6%. When jobs are decentralized, emissions fall by 0.3% in the first and by 3% in the second counterfactual.

Suggested Citation

  • Rainald Borck, 2017. "Public Transport and Urban Pollution," CESifo Working Paper Series 6606, CESifo.
  • Handle: RePEc:ces:ceswps:_6606
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp6606.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rainald Borck & Takatoshi Tabuchi, 2019. "Pollution and city size: can cities be too small?," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 995-1020.
    2. Lucas W. Davis, 2008. "The Effect of Driving Restrictions on Air Quality in Mexico City," Journal of Political Economy, University of Chicago Press, vol. 116(1), pages 38-81, February.
    3. Anas, Alex, 1990. "Taste heterogeneity and urban spatial structure: The logit model and monocentric theory reconciled," Journal of Urban Economics, Elsevier, vol. 28(3), pages 318-335, November.
    4. Stephen J. Redding & Esteban Rossi-Hansberg, 2017. "Quantitative Spatial Economics," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 21-58, September.
    5. Stefan Bauernschuster & Timo Hener & Helmut Rainer, 2017. "When Labor Disputes Bring Cities to a Standstill: The Impact of Public Transit Strikes on Traffic, Accidents, Air Pollution, and Health," American Economic Journal: Economic Policy, American Economic Association, vol. 9(1), pages 1-37, February.
    6. Tscharaktschiew, Stefan & Hirte, Georg, 2012. "Should subsidies to urban passenger transport be increased? A spatial CGE analysis for a German metropolitan area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 285-309.
    7. Gabriel M. Ahlfeldt & Stephen J. Redding & Daniel M. Sturm & Nikolaus Wolf, 2015. "The Economics of Density: Evidence From the Berlin Wall," Econometrica, Econometric Society, vol. 83, pages 2127-2189, November.
    8. Combes, Pierre-Philippe & Gobillon, Laurent, 2015. "The Empirics of Agglomeration Economies," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 247-348, Elsevier.
    9. Pablo D. Fajgelbaum & Edouard Schaal, 2020. "Optimal Transport Networks in Spatial Equilibrium," Econometrica, Econometric Society, vol. 88(4), pages 1411-1452, July.
    10. Nicolas Gendron-Carrier & Marco Gonzalez-Navarro & Stefano Polloni & Matthew A. Turner, 2022. "Subways and Urban Air Pollution," American Economic Journal: Applied Economics, American Economic Association, vol. 14(1), pages 164-196, January.
    11. Rainald Borck & Jan K. Brueckner, 2018. "Optimal Energy Taxation in Cities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(2), pages 481-516.
    12. Ian W. H. Parry & Kenneth A. Small, 2009. "Should Urban Transit Subsidies Be Reduced?," American Economic Review, American Economic Association, vol. 99(3), pages 700-724, June.
    13. Albert Saiz, 2010. "The Geographic Determinants of Housing Supply," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1253-1296.
    14. Gonzalez-Navarro, Marco & Turner, Matthew A., 2018. "Subways and urban growth: Evidence from earth," Journal of Urban Economics, Elsevier, vol. 108(C), pages 85-106.
    15. Duranton, Gilles & Puga, Diego, 2004. "Micro-foundations of urban agglomeration economies," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 48, pages 2063-2117, Elsevier.
    16. Gilles Duranton & Matthew A. Turner, 2011. "The Fundamental Law of Road Congestion: Evidence from US Cities," American Economic Review, American Economic Association, vol. 101(6), pages 2616-2652, October.
    17. Glaister, Stephen, 1974. "Generalised Consumer Surplus and Public Transport Pricing," Economic Journal, Royal Economic Society, vol. 84(336), pages 849-867, December.
    18. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    19. Ferdinando Monte & Stephen J. Redding & Esteban Rossi-Hansberg, 2018. "Commuting, Migration, and Local Employment Elasticities," American Economic Review, American Economic Association, vol. 108(12), pages 3855-3890, December.
    20. Borck, Rainald, 2016. "Will skyscrapers save the planet? Building height limits and urban greenhouse gas emissions," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 13-25.
    21. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    22. Mackett, Roger L. & Edwards, Marion, 1998. "The impact of new urban public transport systems: will the expectations be met?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(4), pages 231-245, May.
    23. Morris A. Davis & Francois Ortalo-Magne, 2011. "Household Expenditures, Wages, Rents," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 248-261, April.
    24. Proost, Stef & Van Dender, Kurt, 2001. "The welfare impacts of alternative policies to address atmospheric pollution in urban road transport," Regional Science and Urban Economics, Elsevier, vol. 31(4), pages 383-411, July.
    25. Gallego, Francisco & Montero, Juan-Pablo & Salas, Christian, 2013. "The effect of transport policies on car use: Evidence from Latin American cities," Journal of Public Economics, Elsevier, vol. 107(C), pages 47-62.
    26. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    27. Joseph Gyourko & Albert Saiz, 2006. "Construction Costs And The Supply Of Housing Structure," Journal of Regional Science, Wiley Blackwell, vol. 46(4), pages 661-680, October.
    28. Akos Valentinyi & Berthold Herrendorf, 2008. "Measuring Factor Income Shares at the Sector Level," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 11(4), pages 820-835, October.
    29. Rosenthal, Stuart S. & Strange, William C., 2004. "Evidence on the nature and sources of agglomeration economies," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 49, pages 2119-2171, Elsevier.
    30. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borck, Rainald & Schrauth, Philipp, 2021. "Population density and urban air quality," Regional Science and Urban Economics, Elsevier, vol. 86(C).
    2. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    3. Jakučionytė-Skodienė, Miglė & Krikštolaitis, Ričardas & Liobikienė, Genovaitė, 2022. "The contribution of changes in climate-friendly behaviour, climate change concern and personal responsibility to household greenhouse gas emissions: Heating/cooling and transport activities in the Eur," Energy, Elsevier, vol. 246(C).
    4. Niklas Gohl & Philipp Schrauth, 2022. "Ticket to Paradise? The Effect of a Public Transport Subsidy on Air Quality," CEPA Discussion Papers 50, Center for Economic Policy Analysis.
    5. Echaniz, Eneko & Cordera, Rubén & Rodriguez, Andrés & Nogués, Soledad & Coppola, Pierlugi & dell’Olio, Luigi, 2022. "Spatial and temporal variation of user satisfaction in public transport systems," Transport Policy, Elsevier, vol. 117(C), pages 88-97.
    6. Barros, Victor & Cruz, Carlos Oliveira & Júdice, Tomás & Sarmento, Joaquim Miranda, 2021. "Is taxation being effectively used to promote public transport in Europe?," Transport Policy, Elsevier, vol. 114(C), pages 215-224.
    7. Hörcher, Daniel & De Borger, Bruno & Seifu, Woubit & Graham, Daniel J., 2020. "Public transport provision under agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 81(C).
    8. Zhu, Chunxiao & Shou, Minghuan & Zhou, Yitong & Li, Wenrui, 2023. "Modeling the effect of social media on older adults’ usage intention of public transport," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 239-250.
    9. Cui, Yin & Li, Zhiyong & Sun, Yu & Sun, Weizheng, 2023. "Environmental performance of an urban passenger transport system and influencing factors: A case study of Tianjin, China," Utilities Policy, Elsevier, vol. 80(C).
    10. Han, Qing & Liu, Ying & Lu, Zilong, 2020. "Temporary driving restrictions, air pollution, and contemporaneous health: Evidence from China," Regional Science and Urban Economics, Elsevier, vol. 84(C).
    11. Klingen, Joris & van Ommeren, Jos, 2020. "Urban air pollution and time losses: Evidence from cyclists in London," Regional Science and Urban Economics, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephan Heblich & Stephen J Redding & Daniel M Sturm, 2020. "The Making of the Modern Metropolis: Evidence from London," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(4), pages 2059-2133.
    2. Redding, Stephen & Nakajima, Kentaro & Miyauchi, Yuhei, 2021. "Consumption access and agglomeration: evidence from smartphone data," LSE Research Online Documents on Economics 114353, London School of Economics and Political Science, LSE Library.
    3. Seidel, Tobias & Wickerath, Jan, 2020. "Rush hours and urbanization," Regional Science and Urban Economics, Elsevier, vol. 85(C).
    4. Stephen J. Redding, 2020. "Trade and Geography," NBER Working Papers 27821, National Bureau of Economic Research, Inc.
    5. Redding, Stephen, 2021. "Suburbanization in the United States 1970-2010," CEPR Discussion Papers 16174, C.E.P.R. Discussion Papers.
    6. Davis, Lucas W., 2021. "Estimating the price elasticity of demand for subways: Evidence from Mexico," Regional Science and Urban Economics, Elsevier, vol. 87(C).
    7. Larson, William & Yezer, Anthony & Zhao, Weihua, 2022. "Urban planning policies and the cost of living in large cities," Regional Science and Urban Economics, Elsevier, vol. 96(C).
    8. Rainald Borck & Takatoshi Tabuchi, 2019. "Pollution and city size: can cities be too small?," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 995-1020.
    9. Amine Ouazad, 2020. "Resilient Urban Housing Markets: Shocks vs. Fundamentals," Papers 2010.00413, arXiv.org, revised Oct 2020.
    10. Christensen, Peter & Osman, Adam, 2021. "The Demand for Mobility: Evidence from an Experiment with Uber Riders," IZA Discussion Papers 14179, Institute of Labor Economics (IZA).
    11. Stef Proost & Jacques-François Thisse, 2019. "What Can Be Learned from Spatial Economics?," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 575-643, September.
    12. Wookun Kim, 2023. "Migration, Commuting, and the Spatial Distribution of Public Spending," Departmental Working Papers 2305, Southern Methodist University, Department of Economics.
    13. repec:hal:journl:hal-03403442 is not listed on IDEAS
    14. Akamatsu, Takashi & Mori, Tomoya & Osawa, Minoru & Takayama, Yuki, 2017. "Spatial scale of agglomeration and dispersion: Theoretical foundations and empirical implications," MPRA Paper 80689, University Library of Munich, Germany.
    15. Gabriel M. Ahlfeldt & Stephen J. Redding & Daniel M. Sturm & Nikolaus Wolf, 2015. "The Economics of Density: Evidence From the Berlin Wall," Econometrica, Econometric Society, vol. 83, pages 2127-2189, November.
    16. Stephen J. Redding & Esteban Rossi-Hansberg, 2017. "Quantitative Spatial Economics," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 21-58, September.
    17. Monras, Joan, 2015. "Economic Shocks and Internal Migration," IZA Discussion Papers 8840, Institute of Labor Economics (IZA).
    18. Gilles Duranton & Geetika Nagpal & Matthew A. Turner, 2020. "Transportation Infrastructure in the US," NBER Chapters, in: Economic Analysis and Infrastructure Investment, pages 165-210, National Bureau of Economic Research, Inc.
    19. Jordy Meekes & Wolter H. J. Hassink, 2023. "Endogenous local labour markets, regional aggregation and agglomeration economies," Regional Studies, Taylor & Francis Journals, vol. 57(1), pages 13-25, January.
    20. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    21. Farid Farrokhi, 2019. "Skill, Agglomeration, and Inequality in the Spatial Economy," 2019 Meeting Papers 357, Society for Economic Dynamics.

    More about this item

    Keywords

    public transport; pollution; discrete choice;
    All these keywords.

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • R48 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government Pricing and Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_6606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.