IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/22807.html
   My bibliography  Save this paper

The Social Cost of Carbon Revisited

Author

Listed:
  • Robert S. Pindyck

Abstract

An estimate of the social cost of carbon (SCC) is key to climate policy. But how should we estimate the SCC? A common approach is to use an integrated assessment model (IAM) to simulate time paths for the atmospheric CO2 concentration, its impact on global mean temperature, and the resulting reductions in GDP and consumption. I have argued that IAMs have serious deficiencies that make them poorly suited for this job, but what is the alternative? I present a more transparent approach to estimating an average SCC, which I argue is a more useful guide for policy than the marginal SCC derived from IAMs. I rely on a survey through which I elicit expert opinions regarding (1) the probabilities of alternative economic outcomes of climate change, including extreme outcomes such as a 20% or greater reduction in GDP, but not the particular causes of those outcomes; and (2) the reduction in emissions required to avert an extreme outcome. My estimate of the average SCC is the ratio of the present value of damages from an extreme outcome to the total emission reduction needed to avert such an outcome. I discuss the survey instrument, explain how experts were identified, and present results. I obtain SCC estimates of $200/mt or higher, but the variation across experts is large. Trimming outliers and focusing on experts who expressed a high degree of confidence in their answers yields lower SCCs, $80 to $100/mt.

Suggested Citation

  • Robert S. Pindyck, 2016. "The Social Cost of Carbon Revisited," NBER Working Papers 22807, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:22807
    Note: EEE PE
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w22807.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ravi Bansal & Marcelo Ochoa, 2011. "Welfare Costs of Long-Run Temperature Shifts," NBER Working Papers 17574, National Bureau of Economic Research, Inc.
    2. Moritz A. Drupp & Mark C. Freeman & Ben Groom & Frikk Nesje, 2018. "Discounting Disentangled," American Economic Journal: Economic Policy, American Economic Association, vol. 10(4), pages 109-134, November.
    3. Weitzman, Martin L., 2011. "Revisiting Fat-Tailed Uncertainty in the Economics of Climate Change," Scholarly Articles 11130443, Harvard University Department of Economics.
    4. Joseph E. Aldy & Alan J. Krupnick & Richard G. Newell & Ian W. H. Parry & William A. Pizer, 2010. "Designing Climate Mitigation Policy," Journal of Economic Literature, American Economic Association, vol. 48(4), pages 903-934, December.
    5. Robert S. Pindyck, 2011. "Modeling the Impact of Warming in Climate Change Economics," NBER Chapters, in: The Economics of Climate Change: Adaptations Past and Present, pages 47-71, National Bureau of Economic Research, Inc.
    6. Ian W. R. Martin & Robert S. Pindyck, 2015. "Averting Catastrophes: The Strange Economics of Scylla and Charybdis," American Economic Review, American Economic Association, vol. 105(10), pages 2947-2985, October.
    7. Simon Dietz & Nicholas Stern, 2015. "Endogenous Growth, Convexity of Damage and Climate Risk: How Nordhaus' Framework Supports Deep Cuts in Carbon Emissions," Economic Journal, Royal Economic Society, vol. 0(583), pages 574-620, March.
    8. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    9. Pamela Giustinelli & Charles F. Manski & Francesca Molinari, 2018. "Tail and Center Rounding of Probabilistic Expectations in the Health and Retirement Study," NBER Working Papers 24559, National Bureau of Economic Research, Inc.
    10. Pindyck, Robert S, 1978. "The Optimal Exploration and Production of Nonrenewable Resources," Journal of Political Economy, University of Chicago Press, vol. 86(5), pages 841-861, October.
    11. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    12. Pindyck, Robert S., 2019. "The social cost of carbon revisited," Journal of Environmental Economics and Management, Elsevier, vol. 94(C), pages 140-160.
    13. Dietz, Simon & Stern, Nicholas, 2015. "Endogenous growth, convexity of damage and climate risk: how Nordhaus’ framework supports deep cuts in carbon emissions," LSE Research Online Documents on Economics 58406, London School of Economics and Political Science, LSE Library.
    14. Ravi Bansal & Dana Kiku & Marcelo Ochoa, 2016. "Price of Long-Run Temperature Shifts in Capital Markets," NBER Working Papers 22529, National Bureau of Economic Research, Inc.
    15. Martin L. Weitzman, 2011. "Fat-Tailed Uncertainty in the Economics of Catastrophic Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 275-292, Summer.
    16. Pindyck, Robert S., 2012. "Uncertain outcomes and climate change policy," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
    17. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    18. Becker Gary S. & Murphy Kevin M. & Topel Robert H., 2011. "On the Economics of Climate Policy," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 10(2), pages 1-27, May.
    19. Mark C. Freeman & Ben Groom, 2015. "Positively Gamma Discounting: Combining the Opinions of Experts on the Social Discount Rate," Economic Journal, Royal Economic Society, vol. 125(585), pages 1015-1024, June.
    20. Swierzbinski, Joseph E & Mendelsohn, Robert, 1989. "Exploration and Exhaustible Resources: The Microfoundations of Aggregate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(1), pages 175-186, February.
    21. repec:hrv:faseco:34728611 is not listed on IDEAS
    22. Ian W. R. Martin, 2008. "Disasters and the Welfare Cost of Uncertainty," American Economic Review, American Economic Association, vol. 98(2), pages 74-78, May.
    23. Millner, Antony & McDermott, Thomas K. J., 2016. "Model confirmation in climate economics," LSE Research Online Documents on Economics 67122, London School of Economics and Political Science, LSE Library.
    24. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    25. Matthew J. Kotchen, 2018. "Which Social Cost of Carbon? A Theoretical Perspective," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(3), pages 673-694.
    26. Michael D. Hurd, 2009. "Subjective Probabilities in Household Surveys," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 543-564, May.
    27. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    28. Robert S. Pindyck, 2017. "Coase Lecture—Taxes, Targets and the Social Cost of Carbon," Economica, London School of Economics and Political Science, vol. 84(335), pages 345-364, July.
    29. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    30. Robert S. Pindyck, 2017. "The Use and Misuse of Models for Climate Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 100-114.
    31. Manski, Charles F. & Molinari, Francesca, 2010. "Rounding Probabilistic Expectations in Surveys," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 219-231.
    32. Moritz Drupp & Mark Freeman & Ben Groom & Frikk Nesje, 2015. "Discounting disentangled: an expert survey on the determinants of the long-term social discount rate," GRI Working Papers 196a, Grantham Research Institute on Climate Change and the Environment.
    33. Marshall Burke & John Dykema & David B. Lobell & Edward Miguel & Shanker Satyanath, 2015. "Incorporating Climate Uncertainty into Estimates of Climate Change Impacts," The Review of Economics and Statistics, MIT Press, vol. 97(2), pages 461-471, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert S. Pindyck, 2017. "Coase Lecture—Taxes, Targets and the Social Cost of Carbon," Economica, London School of Economics and Political Science, vol. 84(335), pages 345-364, July.
    2. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    3. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Papers 2105.03656, arXiv.org.
    4. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    5. Hjort, Ingrid, 2016. "Potential Climate Risks in Financial Markets: A Literature Overview," Memorandum 01/2016, Oslo University, Department of Economics.
    6. Tsigaris, Panagiotis & Wood, Joel, 2016. "A simple climate-Solow model for introducing the economics of climate change to undergraduate students," International Review of Economics Education, Elsevier, vol. 23(C), pages 65-81.
    7. Marco Letta & Richard S. J. Tol, 2019. "Weather, Climate and Total Factor Productivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(1), pages 283-305, May.
    8. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    9. Hambel, Christoph & Kraft, Holger & Schwartz, Eduardo, 2021. "Optimal carbon abatement in a stochastic equilibrium model with climate change," European Economic Review, Elsevier, vol. 132(C).
    10. Buchholz Wolfgang & Heindl Peter, 2015. "Ökonomische Herausforderungen des Klimawandels," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 16(4), pages 324-350, December.
    11. Ian W. R. Martin & Robert S. Pindyck, 2015. "Averting Catastrophes: The Strange Economics of Scylla and Charybdis," American Economic Review, American Economic Association, vol. 105(10), pages 2947-2985, October.
    12. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    13. Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
    14. Baldwin, Elizabeth & Cai, Yongyang & Kuralbayeva, Karlygash, 2020. "To build or not to build? Capital stocks and climate policy∗," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    15. Bovari, Emmanuel & Giraud, Gaël & Mc Isaac, Florent, 2018. "Coping With Collapse: A Stock-Flow Consistent Monetary Macrodynamics of Global Warming," Ecological Economics, Elsevier, vol. 147(C), pages 383-398.
    16. Michael Donadelli & Marcus Jüppner & Antonio Paradiso & Christian Schlag, 2019. "Temperature Volatility Risk," Working Papers 2019:05, Department of Economics, University of Venice "Ca' Foscari".
    17. Chambers, Robert G. & Melkonyan, Tigran, 2017. "Ambiguity, reasoned determination, and climate-change policy," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 74-92.
    18. Peter H. Howard & Thomas Sterner, 2017. "Few and Not So Far Between: A Meta-analysis of Climate Damage Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 197-225, September.
    19. Oliver D. Bettis & Simon Dietz & Nick G. Silver, 2017. "The risk of climate ruin," Climatic Change, Springer, vol. 140(2), pages 109-118, January.
    20. Marshall Burke & Melanie Craxton & Charles D. Kolstad & Chikara Onda, 2016. "Some Research Challenges In The Economics Of Climate Change," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-14, May.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:22807. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.