IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_6152.html
   My bibliography  Save this paper

Pollution and City Size: Can Cities be too Small?

Author

Listed:
  • Rainald Borck
  • Takatoshi Tabuchi

Abstract

We study the optimal and equilibrium size of cities in a city system model with environmental pollution. Pollution is related to city size through the effect of population on production, commuting, and housing consumption. With symmetric cities, if pollution is local or per capita pollution increases with population, we find that equilibrium cities are too large. When pollution is global and per capita pollution declines with city size, however, equilibrium cities may be too small. With asymmetric cities, the largest cities are too large and the smallest too small when pollution is local or per capita pollution increases with population; when pollution is global and per capita pollution decreases with population, the largest cities are too small and the smallest too large. We also calibrate the model to US cities and find that the largest cities may be undersized by 3-4%.

Suggested Citation

  • Rainald Borck & Takatoshi Tabuchi, 2016. "Pollution and City Size: Can Cities be too Small?," CESifo Working Paper Series 6152, CESifo.
  • Handle: RePEc:ces:ceswps:_6152
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp6152.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Abdel-Rahman, H. M., 1988. "Product differentiation, monopolistic competition and city size," Regional Science and Urban Economics, Elsevier, vol. 18(1), pages 69-86, February.
    2. Xavier Gabaix, 2016. "Power Laws in Economics: An Introduction," Journal of Economic Perspectives, American Economic Association, vol. 30(1), pages 185-206, Winter.
    3. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    4. Larson, William & Liu, Feng & Yezer, Anthony, 2012. "Energy footprint of the city: Effects of urban land use and transportation policies," Journal of Urban Economics, Elsevier, vol. 72(2), pages 147-159.
    5. Combes, Pierre-Philippe & Gobillon, Laurent, 2015. "The Empirics of Agglomeration Economies," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 247-348, Elsevier.
    6. Gudipudi, Ramana & Fluschnik, Till & Ros, Anselmo García Cantú & Walther, Carsten & Kropp, Jürgen P., 2016. "City density and CO2 efficiency," Energy Policy, Elsevier, vol. 91(C), pages 352-361.
    7. Tolley, George S., 1974. "The welfare economics of city bigness," Journal of Urban Economics, Elsevier, vol. 1(3), pages 324-345, July.
    8. Jan Eeckhout & Nezih Guner, 2014. "Optimal Spatial Taxation: Are Big Cities too Small?," Working Papers 804, Barcelona School of Economics.
    9. Henderson, J V, 1974. "The Sizes and Types of Cities," American Economic Review, American Economic Association, vol. 64(4), pages 640-656, September.
    10. Morikawa, Masayuki, 2012. "Population density and efficiency in energy consumption: An empirical analysis of service establishments," Energy Economics, Elsevier, vol. 34(5), pages 1617-1622.
    11. Chun-Chung Au & J. Vernon Henderson, 2006. "Are Chinese Cities Too Small?," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(3), pages 549-576.
    12. Rainald Borck & Jan K. Brueckner, 2018. "Optimal Energy Taxation in Cities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(2), pages 481-516.
    13. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    14. Duranton, Gilles & Puga, Diego, 2004. "Micro-foundations of urban agglomeration economies," Handbook of Regional and Urban Economics, in: J. V. Henderson & J. F. Thisse (ed.), Handbook of Regional and Urban Economics, edition 1, volume 4, chapter 48, pages 2063-2117, Elsevier.
    15. Behrens, Kristian & Robert-Nicoud, Frédéric, 2015. "Agglomeration Theory with Heterogeneous Agents," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 171-245, Elsevier.
    16. Takatoshi Tabuchi & Dao‐Zhi Zeng, 2004. "Stability of Spatial Equilibrium," Journal of Regional Science, Wiley Blackwell, vol. 44(4), pages 641-660, November.
    17. Michail Fragkias & José Lobo & Deborah Strumsky & Karen C Seto, 2013. "Does Size Matter? Scaling of CO2 Emissions and U.S. Urban Areas," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-8, June.
    18. Rainald Borck & Michael Pflüger, 2019. "Green cities? Urbanization, trade, and the environment," Journal of Regional Science, Wiley Blackwell, vol. 59(4), pages 743-766, September.
    19. Rainald Borck, 2014. "Will skyscrapers save the planet?," ERSA conference papers ersa14p1342, European Regional Science Association.
    20. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    21. Tabuchi, Takatoshi & Yoshida, Atsushi, 2000. "Separating Urban Agglomeration Economies in Consumption and Production," Journal of Urban Economics, Elsevier, vol. 48(1), pages 70-84, July.
    22. Borck, Rainald, 2016. "Will skyscrapers save the planet? Building height limits and urban greenhouse gas emissions," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 13-25.
    23. Andrea Sarzynski, 2012. "Bigger Is Not Always Better: A Comparative Analysis of Cities and their Air Pollution Impact," Urban Studies, Urban Studies Journal Limited, vol. 49(14), pages 3121-3138, November.
    24. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    25. Morris A. Davis & Francois Ortalo-Magne, 2011. "Household Expenditures, Wages, Rents," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 248-261, April.
    26. Carl Gaigné & Stéphane Riou & Jacques-François Thisse, 2012. "Are Compact Cities Environmentally (and Socially) Desirable ?," Cahiers de recherche CREATE 2012-4, CREATE.
    27. Tscharaktschiew, Stefan & Hirte, Georg, 2010. "The drawbacks and opportunities of carbon charges in metropolitan areas -- A spatial general equilibrium approach," Ecological Economics, Elsevier, vol. 70(2), pages 339-357, December.
    28. Dascher, Kristof, 2013. "City Silhouette, World Climate," MPRA Paper 48375, University Library of Munich, Germany.
    29. Gilles Duranton & J. V. Henderson & William C. Strange (ed.), 2015. "Handbook of Regional and Urban Economics," Handbook of Regional and Urban Economics, Elsevier, edition 1, volume 5, number 5.
    30. Dascher, Kristof, 2013. "City Silhouette, World Climate," MPRA Paper 48375, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiong Chen & Wencui Du, 2022. "Too Big or Too Small? The Threshold Effects of City Size on Regional Pollution in China," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    2. Juan Carlos Bárcena-Ruiz & F. Javier Casado-Izaga, 2018. "Optimal size of a residential area within a municipality," Journal of Economics, Springer, vol. 124(1), pages 75-92, May.
    3. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    4. Rainald Borck & Philipp Schrauth, 2022. "Urban pollution: A global perspective," Berlin School of Economics Discussion Papers 0008, Berlin School of Economics.
    5. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    6. Niklas Gohl & Philipp Schrauth, 2022. "Ticket to Paradise? The Effect of a Public Transport Subsidy on Air Quality," CEPA Discussion Papers 50, Center for Economic Policy Analysis.
    7. Pflüger, Michael P., 2018. "City Size, Pollution and Emission Policies," IZA Discussion Papers 11354, Institute of Labor Economics (IZA).
    8. Wu, JunJie & Segerson, Kathleen & Wang, Chunhua, 2023. "Is environmental regulation the answer to pollution problems in urbanizing economies?," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
    9. Pflüger, Michael, 2021. "City size, pollution and emission policies," Journal of Urban Economics, Elsevier, vol. 126(C).
    10. Dong, Tao & Jia, Ning & Ma, Shoufeng & Xu, Shu-Xian & Ping Ong, Ghim & Liu, Peng & Huang, Hai-Jun, 2022. "Impacts of intercity commuting on travel characteristics and urban performances in a two-city system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    11. Rainald Borck, 2019. "Bevölkerungsdichte, Stadtstruktur und Umweltverschmutzung [Population density, urban structure and air pollution]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 5(1), pages 161-171, November.
    12. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    13. Borck, Rainald, 2019. "Public transport and urban pollution," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 356-366.
    14. Lafourcade, Miren & Blaudin de Thé, Camille & Carantino, Benjamin, 2018. "The Carbon `Carprint' of Suburbanization: New Evidence from French Cities," CEPR Discussion Papers 13086, C.E.P.R. Discussion Papers.
    15. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: air quality and the density of American cities," LSE Research Online Documents on Economics 117385, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pflüger, Michael, 2021. "City size, pollution and emission policies," Journal of Urban Economics, Elsevier, vol. 126(C).
    2. Michael Pflüger, 2020. "City Size, Pollution and Emission Policies," CESifo Working Paper Series 8448, CESifo.
    3. Borck, Rainald, 2016. "Will skyscrapers save the planet? Building height limits and urban greenhouse gas emissions," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 13-25.
    4. Rainald Borck, 2019. "Bevölkerungsdichte, Stadtstruktur und Umweltverschmutzung [Population density, urban structure and air pollution]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 5(1), pages 161-171, November.
    5. Rainald Borck & Jan K. Brueckner, 2018. "Optimal Energy Taxation in Cities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(2), pages 481-516.
    6. Borck, Rainald, 2014. "Will skyscrapers save the planet?," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100566, Verein für Socialpolitik / German Economic Association.
    7. Albouy, David & Behrens, Kristian & Robert-Nicoud, Frédéric & Seegert, Nathan, 2019. "The optimal distribution of population across cities," Journal of Urban Economics, Elsevier, vol. 110(C), pages 102-113.
    8. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    9. Rainald Borck & Michael Pflüger, 2019. "Green cities? Urbanization, trade, and the environment," Journal of Regional Science, Wiley Blackwell, vol. 59(4), pages 743-766, September.
    10. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    11. Borck, Rainald & Schrauth, Philipp, 2021. "Population density and urban air quality," Regional Science and Urban Economics, Elsevier, vol. 86(C).
    12. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    13. Ahlfeldt, Gabriel M. & Pietrostefani, Elisabetta, 2019. "The economic effects of density: A synthesis," Journal of Urban Economics, Elsevier, vol. 111(C), pages 93-107.
    14. Lafourcade, Miren & Blaudin de Thé, Camille & Carantino, Benjamin, 2018. "The Carbon `Carprint' of Suburbanization: New Evidence from French Cities," CEPR Discussion Papers 13086, C.E.P.R. Discussion Papers.
    15. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    16. Mark Colas & John M. Morehouse, 2022. "The environmental cost of land‐use restrictions," Quantitative Economics, Econometric Society, vol. 13(1), pages 179-223, January.
    17. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: air quality and the density of American cities," LSE Research Online Documents on Economics 117385, London School of Economics and Political Science, LSE Library.
    18. Rémy Le Boennec & Sterenn Lucas, 2020. "Does a positive density perception increase the probability of living in the ideal housing type? Evidence from the Loire-Atlantique Département in France," Working Papers hal-02441513, HAL.
    19. Wu, Jianxin & Xu, Hui & Tang, Kai, 2021. "Industrial agglomeration, CO2 emissions and regional development programs: A decomposition analysis based on 286 Chinese cities," Energy, Elsevier, vol. 225(C).
    20. Leibowicz, Benjamin D., 2020. "Urban land use and transportation planning for climate change mitigation: A theoretical framework," European Journal of Operational Research, Elsevier, vol. 284(2), pages 604-616.

    More about this item

    Keywords

    optimal city size distribution; agglomeration; pollution;
    All these keywords.

    JEL classification:

    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_6152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.