IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa14p1342.html
   My bibliography  Save this paper

Will skyscrapers save the planet?

Author

Listed:
  • Rainald Borck

Abstract

This paper studies the effectiveness of building height limits as a policy to limit greenhouse gas (GHG) emissions. It shows that building height limits lead to urban sprawl and higher emissions from commuting. On the other hand, aggregate housing consumption may decrease which reduces emissions from residential energy use. The paper uses numerical simulation to show that total GHG emissions may be lower under building height restrictions. It also studies the effect of endogenous transport technology and the urban heat island effect.

Suggested Citation

  • Rainald Borck, 2014. "Will skyscrapers save the planet?," ERSA conference papers ersa14p1342, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa14p1342
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa14/e140826aFinal01342.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    2. Peter Krause & Jan Goebel & Martin Kroh & Gert G. Wagner, 2010. "20 Jahre Wiedervereinigung: wie weit Ost- und Westdeutschland zusammengerückt sind," DIW Wochenbericht, DIW Berlin, German Institute for Economic Research, vol. 77(44), pages 2-12.
    3. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    4. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    5. Rainald Borck & Michael Pflüger, 2019. "Green cities? Urbanization, trade, and the environment," Journal of Regional Science, Wiley Blackwell, vol. 59(4), pages 743-766, September.
    6. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    7. Joshi, Kirti Kusum & Kono, Tatsuhito, 2009. "Optimization of floor area ratio regulation in a growing city," Regional Science and Urban Economics, Elsevier, vol. 39(4), pages 502-511, July.
    8. Sophie Legras & Jean Cavailhès, 2012. "Urban form and sustainable development," INRA UMR CESAER Working Papers 2012/5, INRA UMR CESAER, Centre d'’Economie et Sociologie appliquées à l'’Agriculture et aux Espaces Ruraux.
    9. Morris A. Davis & Francois Ortalo-Magne, 2011. "Household Expenditures, Wages, Rents," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(2), pages 248-261, April.
    10. Tscharaktschiew, Stefan & Hirte, Georg, 2010. "The drawbacks and opportunities of carbon charges in metropolitan areas -- A spatial general equilibrium approach," Ecological Economics, Elsevier, vol. 70(2), pages 339-357, December.
    11. Dascher, Kristof, 2013. "City Silhouette, World Climate," MPRA Paper 48375, University Library of Munich, Germany.
    12. Dascher, Kristof, 2013. "City Silhouette, World Climate," MPRA Paper 48375, University Library of Munich, Germany.
    13. repec:dau:papers:123456789/8180 is not listed on IDEAS
    14. Borck, Rainald & Wrede, Matthias, 2008. "Commuting subsidies with two transport modes," Journal of Urban Economics, Elsevier, vol. 63(3), pages 841-848, May.
    15. Larson, William & Liu, Feng & Yezer, Anthony, 2012. "Energy footprint of the city: Effects of urban land use and transportation policies," Journal of Urban Economics, Elsevier, vol. 72(2), pages 147-159.
    16. Bertaud, Alain & Brueckner, Jan K., 2005. "Analyzing building-height restrictions: predicted impacts and welfare costs," Regional Science and Urban Economics, Elsevier, vol. 35(2), pages 109-125, March.
    17. Kono, Tatsuhito & Joshi, Kirti Kusum & Kato, Takeaki & Yokoi, Takahisa, 2012. "Optimal regulation on building size and city boundary: An effective second-best remedy for traffic congestion externality," Regional Science and Urban Economics, Elsevier, vol. 42(4), pages 619-630.
    18. LeRoy, Stephen F. & Sonstelie, Jon, 1983. "Paradise lost and regained: Transportation innovation, income, and residential location," Journal of Urban Economics, Elsevier, vol. 13(1), pages 67-89, January.
    19. Sasaki, Komei, 1990. "Income class, modal choice, and urban spatial structure," Journal of Urban Economics, Elsevier, vol. 27(3), pages 322-343, May.
    20. Carl Gaigné & Stéphane Riou & Jacques-François Thisse, 2012. "Are Compact Cities Environmentally (and Socially) Desirable ?," Cahiers de recherche CREATE 2012-4, CREATE.
    21. Brueckner, Jan K., 1987. "The structure of urban equilibria: A unified treatment of the muth-mills model," Handbook of Regional and Urban Economics, in: E. S. Mills (ed.), Handbook of Regional and Urban Economics, edition 1, volume 2, chapter 20, pages 821-845, Elsevier.
    22. Small, Kenneth A., 2012. "Valuation of travel time," Economics of Transportation, Elsevier, vol. 1(1), pages 2-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rainald Borck & Takatoshi Tabuchi, 2019. "Pollution and city size: can cities be too small?," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 995-1020.
    2. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    3. Rainald Borck & Michael Pflüger, 2019. "Green cities? Urbanization, trade, and the environment," Journal of Regional Science, Wiley Blackwell, vol. 59(4), pages 743-766, September.
    4. Kristof Dascher, 2013. "Climate Change and Urban Contours: Why Countries with Denser City Centers Fight Climate Change Harder," ERSA conference papers ersa13p744, European Regional Science Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borck, Rainald, 2016. "Will skyscrapers save the planet? Building height limits and urban greenhouse gas emissions," Regional Science and Urban Economics, Elsevier, vol. 58(C), pages 13-25.
    2. Rainald Borck & Jan K. Brueckner, 2018. "Optimal Energy Taxation in Cities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(2), pages 481-516.
    3. Rainald Borck & Takatoshi Tabuchi, 2019. "Pollution and city size: can cities be too small?," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 995-1020.
    4. Pflüger, Michael, 2021. "City size, pollution and emission policies," Journal of Urban Economics, Elsevier, vol. 126(C).
    5. Rainald Borck & Michael Pflüger, 2019. "Green cities? Urbanization, trade, and the environment," Journal of Regional Science, Wiley Blackwell, vol. 59(4), pages 743-766, September.
    6. Larson, William & Yezer, Anthony, 2015. "The energy implications of city size and density," Journal of Urban Economics, Elsevier, vol. 90(C), pages 35-49.
    7. Kristof Dascher, 2013. "Climate Change and Urban Contours: Why Countries with Denser City Centers Fight Climate Change Harder," ERSA conference papers ersa13p744, European Regional Science Association.
    8. Michael Pflüger, 2020. "City Size, Pollution and Emission Policies," CESifo Working Paper Series 8448, CESifo.
    9. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    10. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    11. Leibowicz, Benjamin D., 2020. "Urban land use and transportation planning for climate change mitigation: A theoretical framework," European Journal of Operational Research, Elsevier, vol. 284(2), pages 604-616.
    12. Kim, Jinwon, 2016. "Vehicle fuel-efficiency choices, emission externalities, and urban sprawl," Economics of Transportation, Elsevier, vol. 5(C), pages 24-36.
    13. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    14. Agrawal, David R. & Zhao, Weihua, 2023. "Taxing Uber," Journal of Public Economics, Elsevier, vol. 221(C).
    15. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    16. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: air quality and the density of American cities," LSE Research Online Documents on Economics 117385, London School of Economics and Political Science, LSE Library.
    17. Legras, Sophie, 2015. "Correlated environmental impacts of wastewater management in a spatial context," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 83-92.
    18. Rainald Borck, 2019. "Bevölkerungsdichte, Stadtstruktur und Umweltverschmutzung [Population density, urban structure and air pollution]," Zeitschrift für Immobilienökonomie (German Journal of Real Estate Research), Springer;Gesellschaft für Immobilienwirtschaftliche Forschung e. V., vol. 5(1), pages 161-171, November.
    19. Dascher, Kristof, 2019. "Function Follows Form," Journal of Housing Economics, Elsevier, vol. 44(C), pages 131-140.
    20. Xu, Shu-Xian & Liu, Tian-Liang & Huang, Hai-Jun & Liu, Ronghui, 2018. "Mode choice and railway subsidy in a congested monocentric city with endogenous population distribution," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 413-433.

    More about this item

    Keywords

    greenhouse gas emissions; city structure; building height limits;
    All these keywords.

    JEL classification:

    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • R1 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa14p1342. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.