IDEAS home Printed from https://ideas.repec.org/h/eee/gamchp/v4y2015icp619-702.html
   My bibliography  Save this book chapter

Epistemic Game Theory

Author

Listed:
  • Dekel, Eddie
  • Siniscalchi, Marciano

Abstract

Epistemic game theory formalizes assumptions about rationality and mutual beliefs in a formal language, then studies their behavioral implications in games. Specifically, it asks: what do different notions of rationality and different assumptions about what players believe about…what others believe about the rationality of players imply regarding play in a game? Being explicit about these assumptions can be important, because solution concepts are often motivated intuitively in terms of players’ beliefs and their rationality; however, the epistemic analysis may show limitations in these intuitions, reveal what additional assumptions are hidden in the informal arguments, clarify the concepts or show how the intuitions can be generalized. A further premise of this chapter is that the primitives of the model— namely, the hierarchies of beliefs—should be elicitable, at least in principle. Building upon explicit assumptions about elicitable primitives, we present classical and recent developments in epistemic game theory and provide characterizations of a nonexhaustive, but wide, range of solution concepts.

Suggested Citation

  • Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications, Elsevier.
  • Handle: RePEc:eee:gamchp:v:4:y:2015:i:c:p:619-702
    DOI: 10.1016/B978-0-444-53766-9.00012-4
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/B9780444537669000124
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Tirole, Jean, 1991. "Perfect Bayesian equilibrium and sequential equilibrium," Journal of Economic Theory, Elsevier, vol. 53(2), pages 236-260, April.
    2. Rubinstein Ariel & Wolinsky Asher, 1994. "Rationalizable Conjectural Equilibrium: Between Nash and Rationalizability," Games and Economic Behavior, Elsevier, vol. 6(2), pages 299-311, March.
    3. Battigalli, Pierpaolo, 1996. "Strategic Rationality Orderings and the Best Rationalization Principle," Games and Economic Behavior, Elsevier, vol. 13(2), pages 178-200, April.
    4. Liu, Qingmin, 2009. "On redundant types and Bayesian formulation of incomplete information," Journal of Economic Theory, Elsevier, vol. 144(5), pages 2115-2145, September.
    5. Perea, Andrés, 2008. "Minimal belief revision leads to backward induction," Mathematical Social Sciences, Elsevier, vol. 56(1), pages 1-26, July.
    6. Kreps, David M & Wilson, Robert, 1982. "Sequential Equilibria," Econometrica, Econometric Society, vol. 50(4), pages 863-894, July.
    7. Heifetz, Aviad & Samet, Dov, 1998. "Topology-Free Typology of Beliefs," Journal of Economic Theory, Elsevier, vol. 82(2), pages 324-341, October.
    8. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 1999. "Payoff Information and Self-Confirming Equilibrium," Journal of Economic Theory, Elsevier, vol. 89(2), pages 165-185, December.
    9. Battigalli, Pierpaolo & Friedenberg, Amanda, 2012. "Forward induction reasoning revisited," Theoretical Economics, Econometric Society, vol. 7(1), January.
    10. repec:esx:essedp:722 is not listed on IDEAS
    11. Samet, Dov, 1998. "Common Priors and Separation of Convex Sets," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 172-174, July.
    12. Hu, Tai-Wei, 2007. "On p-rationalizability and approximate common certainty of rationality," Journal of Economic Theory, Elsevier, vol. 136(1), pages 379-391, September.
    13. Asheim, Geir B. & Perea, Andres, 2005. "Sequential and quasi-perfect rationalizability in extensive games," Games and Economic Behavior, Elsevier, vol. 53(1), pages 15-42, October.
    14. Friedenberg, Amanda, 2010. "When do type structures contain all hierarchies of beliefs?," Games and Economic Behavior, Elsevier, vol. 68(1), pages 108-129, January.
    15. Carlsson, Hans & van Damme, Eric, 1993. "Global Games and Equilibrium Selection," Econometrica, Econometric Society, vol. 61(5), pages 989-1018, September.
    16. Ely, Jeffrey C. & Peski, Marcin, 2006. "Hierarchies of belief and interim rationalizability," Theoretical Economics, Econometric Society, vol. 1(1), pages 19-65, March.
    17. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2007. "Interactive epistemology in games with payoff uncertainty," Research in Economics, Elsevier, vol. 61(4), pages 165-184, December.
    18. Drew Fudenberg & David M. Kreps & David K. Levine, 2008. "On the Robustness of Equilibrium Refinements," World Scientific Book Chapters,in: A Long-Run Collaboration On Long-Run Games, chapter 5, pages 67-93 World Scientific Publishing Co. Pte. Ltd..
    19. Dirk Bergemann & Stephen Morris, 2011. "Correlated Equilibrium in Games with Incomplete Information," Cowles Foundation Discussion Papers 1822, Cowles Foundation for Research in Economics, Yale University.
    20. Basu, Kaushik & Weibull, Jorgen W., 1991. "Strategy subsets closed under rational behavior," Economics Letters, Elsevier, vol. 36(2), pages 141-146, June.
    21. Adam Brandenburger & Eddie Dekel, 2014. "Hierarchies of Beliefs and Common Knowledge," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 2, pages 31-41 World Scientific Publishing Co. Pte. Ltd..
    22. Geir B. , Asheim & Voorneveld, Max & W. Weibull, Jörgen, 2009. "Epistemically Stable Strategy Sets," Memorandum 01/2010, Oslo University, Department of Economics.
    23. Martin Dufwenberg & Mark Stegeman, 2002. "Existence and Uniqueness of Maximal Reductions Under Iterated Strict Dominance," Econometrica, Econometric Society, vol. 70(5), pages 2007-2023, September.
    24. Keisler, H. Jerome & Lee, Byung Soo, 2011. "Common assumption of rationality," MPRA Paper 34441, University Library of Munich, Germany.
    25. Robert Aumann & Adam Brandenburger, 2014. "Epistemic Conditions for Nash Equilibrium," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 5, pages 113-136 World Scientific Publishing Co. Pte. Ltd..
    26. Robert J. Aumann, 1999. "Interactive epistemology II: Probability," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(3), pages 301-314.
    27. Dekel, Eddie & Fudenberg, Drew & Morris, Stephen, 2006. "Topologies on types," Theoretical Economics, Econometric Society, vol. 1(3), pages 275-309, September.
    28. Antonio Penta, 2012. "Higher Order Uncertainty and Information: Static and Dynamic Games," Econometrica, Econometric Society, vol. 80(2), pages 631-660, March.
    29. Marx, Leslie M. & Swinkels, Jeroen M., 2000. "Order Independence for Iterated Weak Dominance," Games and Economic Behavior, Elsevier, vol. 31(2), pages 324-329, May.
    30. Tan, Tommy Chin-Chiu & da Costa Werlang, Sergio Ribeiro, 1988. "The Bayesian foundations of solution concepts of games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 370-391, August.
    31. Samet, Dov, 1996. "Hypothetical Knowledge and Games with Perfect Information," Games and Economic Behavior, Elsevier, vol. 17(2), pages 230-251, December.
    32. Battigalli Pierpaolo & Di Tillio Alfredo & Grillo Edoardo & Penta Antonio, 2011. "Interactive Epistemology and Solution Concepts for Games with Asymmetric Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 11(1), pages 1-40, March.
    33. Fudenberg, Drew & Levine, David K, 1993. "Self-Confirming Equilibrium," Econometrica, Econometric Society, vol. 61(3), pages 523-545, May.
    34. Perea,Andrés, 2012. "Epistemic Game Theory," Cambridge Books, Cambridge University Press, number 9781107401396, October.
    35. Dekel, Eddie & Fudenberg, Drew, 1990. "Rational behavior with payoff uncertainty," Journal of Economic Theory, Elsevier, vol. 52(2), pages 243-267, December.
    36. R. J. Aumann & J. H. Dreze, 2009. "Assessing Strategic Risk," American Economic Journal: Microeconomics, American Economic Association, vol. 1(1), pages 1-16, February.
    37. Perea, Andrés, 2011. "An algorithm for proper rationalizability," Games and Economic Behavior, Elsevier, vol. 72(2), pages 510-525, June.
    38. Aumann, Robert J, 1987. "Correlated Equilibrium as an Expression of Bayesian Rationality," Econometrica, Econometric Society, vol. 55(1), pages 1-18, January.
    39. Jonathan Weinstein & Muhamet Yildiz, 2007. "A Structure Theorem for Rationalizability with Application to Robust Predictions of Refinements," Econometrica, Econometric Society, vol. 75(2), pages 365-400, March.
    40. Battigalli Pierpaolo & Siniscalchi Marciano, 2003. "Rationalization and Incomplete Information," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 3(1), pages 1-46, June.
    41. Paulo Barelli, 2010. "Consistent Beliefs in Extensive Form Games," Games, MDPI, Open Access Journal, vol. 1(4), pages 1-7, October.
    42. Srihari Govindan & Robert Wilson, 2009. "On Forward Induction," Econometrica, Econometric Society, vol. 77(1), pages 1-28, January.
    43. Lawrence Blume & Adam Brandenburger & Eddie Dekel, 2014. "Lexicographic Probabilities and Choice Under Uncertainty," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 6, pages 137-160 World Scientific Publishing Co. Pte. Ltd..
    44. Adam Brandenburger & Eddie Dekel, 2014. "Rationalizability and Correlated Equilibria," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 3, pages 43-57 World Scientific Publishing Co. Pte. Ltd..
    45. Di Tillio, Alfredo, 2008. "Subjective expected utility in games," Theoretical Economics, Econometric Society, vol. 3(3), September.
    46. Battigalli, Pierpaolo, 1997. "On Rationalizability in Extensive Games," Journal of Economic Theory, Elsevier, vol. 74(1), pages 40-61, May.
    47. Milgrom, Paul & Stokey, Nancy, 1982. "Information, trade and common knowledge," Journal of Economic Theory, Elsevier, vol. 26(1), pages 17-27, February.
    48. Adam Brandenburger & Amanda Friedenberg, 2014. "Self-Admissible Sets," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 8, pages 213-249 World Scientific Publishing Co. Pte. Ltd..
    49. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 2004. "Learning to play Bayesian games," Games and Economic Behavior, Elsevier, vol. 46(2), pages 282-303, February.
    50. Aumann, Robert J., 1998. "On the Centipede Game," Games and Economic Behavior, Elsevier, vol. 23(1), pages 97-105, April.
    51. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    52. Rubinstein, Ariel, 1989. "The Electronic Mail Game: Strategic Behavior under "Almost Common Knowledge."," American Economic Review, American Economic Association, vol. 79(3), pages 385-391, June.
    53. Asheim, Geir B. & Dufwenberg, Martin, 2003. "Admissibility and common belief," Games and Economic Behavior, Elsevier, vol. 42(2), pages 208-234, February.
    54. Heifetz, Aviad & Mongin, Philippe, 2001. "Probability Logic for Type Spaces," Games and Economic Behavior, Elsevier, vol. 35(1-2), pages 31-53, April.
    55. Heifetz, Aviad, 2006. "The positive foundation of the common prior assumption," Games and Economic Behavior, Elsevier, vol. 56(1), pages 105-120, July.
    56. In-Koo Cho & David M. Kreps, 1987. "Signaling Games and Stable Equilibria," The Quarterly Journal of Economics, Oxford University Press, vol. 102(2), pages 179-221.
    57. Rubinstein, Ariel & Wolinsky, Asher, 1990. "On the logic of "agreeing to disagree" type results," Journal of Economic Theory, Elsevier, vol. 51(1), pages 184-193, June.
    58. Nau, Robert F. & McCardle, Kevin F., 1990. "Coherent behavior in noncooperative games," Journal of Economic Theory, Elsevier, vol. 50(2), pages 424-444, April.
    59. Heifetz, Aviad, 1993. "The Bayesian Formulation of Incomplete Information--The Non-compact Case," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(4), pages 329-338.
    60. FORGES , Françoise, 1993. "Five Legitimate Definitions of Correlated Equilibrium in Games with Incomplete Information," CORE Discussion Papers 1993009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    61. Feinberg, Yossi, 2000. "Characterizing Common Priors in the Form of Posteriors," Journal of Economic Theory, Elsevier, vol. 91(2), pages 127-179, April.
    62. Chen, Yi-Chun & Long, Ngo Van & Luo, Xiao, 2007. "Iterated strict dominance in general games," Games and Economic Behavior, Elsevier, vol. 61(2), pages 299-315, November.
    63. Adam Brandenburger & Amanda Friedenberg & H. Jerome Keisler, 2014. "Admissibility in Games," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 7, pages 161-212 World Scientific Publishing Co. Pte. Ltd..
    64. Perea,Andrés, 2012. "Epistemic Game Theory," Cambridge Books, Cambridge University Press, number 9781107008915, October.
    65. Geir B. Asheim, 2002. "Proper rationalizability in lexicographic beliefs," International Journal of Game Theory, Springer;Game Theory Society, vol. 30(4), pages 453-478.
    66. Giacomo Bonanno & Klaus Nehring, 1999. "How to make sense of the common prior assumption under incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(3), pages 409-434.
    67. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    68. Reny Philip J., 1993. "Common Belief and the Theory of Games with Perfect Information," Journal of Economic Theory, Elsevier, vol. 59(2), pages 257-274, April.
    69. Robert J. Aumann, 1999. "Interactive epistemology I: Knowledge," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(3), pages 263-300.
    70. Elchanan Ben-Porath, 1997. "Rationality, Nash Equilibrium and Backwards Induction in Perfect-Information Games," Review of Economic Studies, Oxford University Press, vol. 64(1), pages 23-46.
    71. Barelli, Paulo & Galanis, Spyros, 2013. "Admissibility and event-rationality," Games and Economic Behavior, Elsevier, vol. 77(1), pages 21-40.
    72. Frank Schuhmacher, 1999. "Proper rationalizability and backward induction," International Journal of Game Theory, Springer;Game Theory Society, vol. 28(4), pages 599-615.
    73. Atsushi Kajii & Stephen Morris, 1997. "The Robustness of Equilibria to Incomplete Information," Econometrica, Econometric Society, vol. 65(6), pages 1283-1310, November.
    74. Chen, Yi-Chun, 2010. "Universality of the Epstein-Wang type structure," Games and Economic Behavior, Elsevier, vol. 68(1), pages 389-402, January.
    75. Rubinstein, Ariel, 1991. "Comments on the Interpretation of Game Theory," Econometrica, Econometric Society, vol. 59(4), pages 909-924, July.
    76. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    77. Stalnaker, Robert, 1998. "Belief revision in games: forward and backward induction1," Mathematical Social Sciences, Elsevier, vol. 36(1), pages 31-56, July.
    78. Barelli, Paulo, 2009. "Consistency of beliefs and epistemic conditions for Nash and correlated equilibria," Games and Economic Behavior, Elsevier, vol. 67(2), pages 363-375, November.
    79. Borgers, Tilman, 1993. "Pure Strategy Dominance," Econometrica, Econometric Society, vol. 61(2), pages 423-430, March.
    80. Battigalli, Pierpaolo & Siniscalchi, Marciano, 1999. "Hierarchies of Conditional Beliefs and Interactive Epistemology in Dynamic Games," Journal of Economic Theory, Elsevier, vol. 88(1), pages 188-230, September.
    81. Balkenborg, Dieter & Winter, Eyal, 1997. "A necessary and sufficient epistemic condition for playing backward induction," Journal of Mathematical Economics, Elsevier, vol. 27(3), pages 325-345, April.
    82. Lee, Byung Soo, 2013. "Conditional Beliefs and Higher-Order Preferences," MPRA Paper 48551, University Library of Munich, Germany.
    83. Ganguli, Jayant & Heifetz, Aviad & Lee, Byung Soo, 2016. "Universal interactive preferences," Journal of Economic Theory, Elsevier, vol. 162(C), pages 237-260.
    84. Ahn, David S., 2007. "Hierarchies of ambiguous beliefs," Journal of Economic Theory, Elsevier, vol. 136(1), pages 286-301, September.
    85. Mariotti, Marco, 1995. "Is Bayesian Rationality Compatible with Strategic Rationality?," Economic Journal, Royal Economic Society, vol. 105(432), pages 1099-1109, September.
    86. Adam Brandenburger & Amanda Friedenberg, 2014. "Intrinsic Correlation in Games," World Scientific Book Chapters,in: The Language of Game Theory Putting Epistemics into the Mathematics of Games, chapter 4, pages 59-111 World Scientific Publishing Co. Pte. Ltd..
    87. Dekel, Eddie & Fudenberg, Drew & Morris, Stephen, 2007. "Interim correlated rationalizability," Theoretical Economics, Econometric Society, vol. 2(1), pages 15-40, March.
    88. Morris, Stephen, 1994. "Trade with Heterogeneous Prior Beliefs and Asymmetric Information," Econometrica, Econometric Society, vol. 62(6), pages 1327-1347, November.
    89. John C. Harsanyi, 1967. "Games with Incomplete Information Played by "Bayesian" Players, I-III Part I. The Basic Model," Management Science, INFORMS, vol. 14(3), pages 159-182, November.
    90. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, January.
    91. Monderer, Dov & Samet, Dov, 1989. "Approximating common knowledge with common beliefs," Games and Economic Behavior, Elsevier, vol. 1(2), pages 170-190, June.
    92. Willemien Kets, 2012. "Bounded Reasoning and Higher-Order Uncertainty," Discussion Papers 1547, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    93. Geanakoplos, John & Pearce, David & Stacchetti, Ennio, 1989. "Psychological games and sequential rationality," Games and Economic Behavior, Elsevier, vol. 1(1), pages 60-79, March.
    94. Battigalli, Pierpaolo & Siniscalchi, Marciano, 2002. "Strong Belief and Forward Induction Reasoning," Journal of Economic Theory, Elsevier, vol. 106(2), pages 356-391, October.
    95. Battigalli, Pierpaolo, 2003. "Rationalizability in infinite, dynamic games with incomplete information," Research in Economics, Elsevier, vol. 57(1), pages 1-38, March.
    96. Reny, Philip J, 1992. "Backward Induction, Normal Form Perfection and Explicable Equilibria," Econometrica, Econometric Society, vol. 60(3), pages 627-649, May.
    97. Samet, Dov, 1998. "Iterated Expectations and Common Priors," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 131-141, July.
    98. Tercieux, Olivier, 2006. "p-Best response set," Journal of Economic Theory, Elsevier, vol. 131(1), pages 45-70, November.
    99. Gul, Faruk, 1996. "Rationality and Coherent Theories of Strategic Behavior," Journal of Economic Theory, Elsevier, vol. 70(1), pages 1-31, July.
    100. Samuelson, Larry, 1992. "Dominated strategies and common knowledge," Games and Economic Behavior, Elsevier, vol. 4(2), pages 284-313, April.
    101. Adam Brandenburger, 2007. "The power of paradox: some recent developments in interactive epistemology," International Journal of Game Theory, Springer;Game Theory Society, vol. 35(4), pages 465-492, April.
    102. Pierpaolo Battigalli & Alfredo Di Tillio & Dov Samet, 2011. "Strategies and interactive beliefs in dynamic games," Working Papers 375, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    103. Samet, Dov, 2013. "Common belief of rationality in games of perfect information," Games and Economic Behavior, Elsevier, vol. 79(C), pages 192-200.
    104. Aumann, Robert J., 1995. "Backward induction and common knowledge of rationality," Games and Economic Behavior, Elsevier, vol. 8(1), pages 6-19.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gizatulina, Alia & Hellwig, Martin, 2017. "The generic possibility of full surplus extraction in models with large type spaces," Journal of Economic Theory, Elsevier, vol. 170(C), pages 385-416.
    2. Zuazo-Garin, Peio, 2017. "Uncertain information structures and backward induction," Journal of Mathematical Economics, Elsevier, vol. 71(C), pages 135-151.
    3. repec:eee:macchp:v2-1065 is not listed on IDEAS

    More about this item

    Keywords

    Epistemic game theory; Interactive epistemology; Solution concepts; Backward induction; Forward induction; Rationalizability; Common-prior assumption; Hierarchies of beliefs; Conditional probability systems; Lexicographic probability systems; C72; D81;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:gamchp:v:4:y:2015:i:c:p:619-702. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.