IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/933.html
   My bibliography  Save this paper

Rationalizable Conjectural Equilibrium: Between Nash and Rationalizability

Author

Listed:
  • Ariel Rubinstein
  • Asher Wolinsky

Abstract

For a steady state to be a Nash equilibrium the agents have to perfectly observe the actions of others. This paper suggests a solution concept for cases where players observe only an imperfect signal of what the others' actions are. The model is enriched by specifying the signal that each player has about the actions taken by the others. The solution, which we call rationalizbale conjectural equilibrium (RCE), is a profile of actions such that each player's action is optimal, given the assumption that it is common knowledge that all players maximize their expected utility given their knowledge. The RCE occupies an intermediary position between Nash equilibrium on one hand and Rationalizability style Bernheim-Pearce on the other hand. The concept is demonstrated by several examples in which it refines the rationalizability concept and still is not equivalent to Nash equilibrium.

Suggested Citation

  • Ariel Rubinstein & Asher Wolinsky, 1991. "Rationalizable Conjectural Equilibrium: Between Nash and Rationalizability," Discussion Papers 933, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:933
    as

    Download full text from publisher

    File URL: http://www.kellogg.northwestern.edu/research/math/papers/933.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    2. Battigalli, Pierpaolo, 2003. "Rationalizability in infinite, dynamic games with incomplete information," Research in Economics, Elsevier, vol. 57(1), pages 1-38, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Müller, Christoph, 2020. "Robust implementation in weakly perfect Bayesian strategies," Journal of Economic Theory, Elsevier, vol. 189(C).
    2. Cappelletti Giuseppe, 2010. "A Note on Rationalizability and Restrictions on Beliefs," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-13, September.
    3. Perea Andrés, 2003. "Rationalizability and Minimal Complexity in Dynamic Games," Research Memorandum 047, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    4. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    5. Dekel, Eddie & Fudenberg, Drew & Levine, David K., 1999. "Payoff Information and Self-Confirming Equilibrium," Journal of Economic Theory, Elsevier, vol. 89(2), pages 165-185, December.
    6. Shimoji, Makoto & Schweinzer, Paul, 2015. "Implementation without incentive compatibility: Two stories with partially informed planners," Games and Economic Behavior, Elsevier, vol. 91(C), pages 258-267.
    7. Shuige Liu, 2021. "Characterizing permissibility, proper rationalizability, and iterated admissibility by incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 119-148, March.
    8. Weinstein, Jonathan & Yildiz, Muhamet, 2011. "Sensitivity of equilibrium behavior to higher-order beliefs in nice games," Games and Economic Behavior, Elsevier, vol. 72(1), pages 288-300, May.
    9. Takashi Kunimoto & Rene Saran & Roberto Serrano, 2020. "Interim Rationalizable Implementation of Functions," Working Papers 2020-23, Brown University, Department of Economics.
    10. Shuige Liu, 2018. "Characterizing Permissibility, Proper Rationalizability, and Iterated Admissibility by Incomplete Information," Papers 1811.01933, arXiv.org.
    11. Mounir, Angie & Perea, Andrés & Tsakas, Elias, 2018. "Common belief in approximate rationality," Mathematical Social Sciences, Elsevier, vol. 91(C), pages 6-16.
    12. Vincent J. Vannetelbosch & P. Jean-Jacques Herings, 2000. "The equivalence of the Dekel-Fudenberg iterative procedure and weakly perfect rationalizability," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 15(3), pages 677-687.
    13. Pierpaolo Battigalli, 2006. "Rationalization In Signaling Games: Theory And Applications," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 67-93.
    14. Desgranges, Gabriel & Gauthier, Stéphane, 2016. "Rationalizability and efficiency in an asymmetric Cournot oligopoly," International Journal of Industrial Organization, Elsevier, vol. 44(C), pages 163-176.
    15. Pei, Ting & Takahashi, Satoru, 2019. "Rationalizable strategies in random games," Games and Economic Behavior, Elsevier, vol. 118(C), pages 110-125.
    16. Mario Gilli, 2002. "Rational Learning in Imperfect Monitoring Games," Working Papers 46, University of Milano-Bicocca, Department of Economics, revised Mar 2002.
    17. Asheim, G.B. & Dufwenberg, M., 1996. "Admissibility and Common Knowledge," Discussion Paper 1996-16, Tilburg University, Center for Economic Research.
    18. Gilles Grandjean & Ana Mauleon & Vincent Vannetelbosch, 2017. "Strongly rational sets for normal-form games," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 35-46, April.
    19. Kevin D. Cotter, 1989. "Correlated Equilibria with Payoff Uncertainty," Discussion Papers 840, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    20. Mongin, P., 1998. "Does Optimization Imply Rationality?," Papers 9817, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:933. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cmnwuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fran Walker The email address of this maintainer does not seem to be valid anymore. Please ask Fran Walker to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/cmnwuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.