IDEAS home Printed from https://ideas.repec.org/p/nwu/cmsems/1066.html
   My bibliography  Save this paper

Order Independence for Iterated Weak Dominance

Author

Listed:
  • Leslie M. Marx
  • Jeroen M. Swinkels

Abstract

In general, the result of the elimination of weakly dominated strategies depends on order. We define nice weak dominance. Under nice weak dominance, order does not matter. We identify an important class of games under which nice weak dominance and weak dominance are equivalent, and so order under weak dominance does not matter. For all games, the result of iterative nice weak dominance is an upper bound on he result from any order of weak dominance. The result strengthen the intuitive relationship between backward induction and weak dominance, and shed light on some computational problems relating to weak dominance.

Suggested Citation

  • Leslie M. Marx & Jeroen M. Swinkels, 1996. "Order Independence for Iterated Weak Dominance," Discussion Papers 1066R, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:1066
    as

    Download full text from publisher

    File URL: http://www.kellogg.northwestern.edu/research/math/papers/1066.pdf
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ehud Kalai & Eitan Zemel, 1988. "On The Order of Eliminating Dominated Strategies," Discussion Papers 789, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Marx, Leslie M. & Swinkels, Jeroen M., 2000. "Order Independence for Iterated Weak Dominance," Games and Economic Behavior, Elsevier, vol. 31(2), pages 324-329, May.
    3. Mailath, George J & Samuelson, Larry & Swinkels, Jeroen M, 1993. "Extensive Form Reasoning in Normal Form Games," Econometrica, Econometric Society, vol. 61(2), pages 273-302, March.
    4. Moulin, Herve, 1984. "Dominance solvability and cournot stability," Mathematical Social Sciences, Elsevier, vol. 7(1), pages 83-102, February.
    5. Itzhak Gilboa & E. Kalai & E. Zemel, 1990. "On the order of eliminating dominated strategies," Post-Print hal-00481648, HAL.
    6. Moulin, Herve, 1979. "Dominance Solvable Voting Schemes," Econometrica, Econometric Society, vol. 47(6), pages 1137-1151, November.
    7. Itzhak Gilboa & Ehud Kalai & Eitan Zemel, 1993. "The Complexity of Eliminating Dominated Strategies," Mathematics of Operations Research, INFORMS, vol. 18(3), pages 553-565, August.
    8. Moulin, Herve, 1994. "Social choice," Handbook of Game Theory with Economic Applications,in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 31, pages 1091-1125 Elsevier.
    9. Mark A. Satterthwaite & Hugo Sonnenschein, 1981. "Strategy-Proof Allocation Mechanisms at Differentiable Points," Review of Economic Studies, Oxford University Press, vol. 48(4), pages 587-597.
    10. Samuelson, Larry, 1992. "Dominated strategies and common knowledge," Games and Economic Behavior, Elsevier, vol. 4(2), pages 284-313, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:1066. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fran Walker). General contact details of provider: http://edirc.repec.org/data/cmnwuus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.